NetSDK_C# Programming Manual (Field
Surveillance Unit)

User’s Manual

V1.0.0

Safety Instructions

Foreword

The following categorized signal words with defined meaning might appear in the manual.

Signal Words

Meaning

A DANGER

Indicates a high potential hazard which, if not avoided, will result in
death or serious injury.

A WARNING

Indicates a medium or low potential hazard which, if not avoided,
could result in slight or moderate injury.

A CAUTION

Indicates a potential risk which, if not avoided, could result in
property damage, data loss, lower performance, or unpredictable
result.

C=> 11ps

Provides methods to help you solve a problem or save you time.

NOTE

Provides additional information as the emphasis and supplement to
the text.

Revision History

Version Revision Content Release Time

V1.0.0 First release.

April 2021

Glossary

This chapter provides the definitions to some of the terms appearing in the Manual to help you
understand the function of each module.

Term Description
Device ID This ID uniquely identifies an external device for the monitoring and collection of
evice
various data. It is described as DevicelD in the interface structure.
Monitoring Functional abstraction that monitors a certain type of values on the external device,
Point identified by a unique ID. It is described as ID in the interface structure.
Remote . . .
)] Point alarm information.
Signaling

Telemetering

Point monitoring data upload.

Table of Contents

Foreword

Glossary
1 Introduction

1.1 Overview

1.2 System Requirements

1.3 Field Surveillance Unit

1.4 Scenes

2 Main Functions
2.1 Initializing NetSDK
2.1.1 Introduction

2.1.2 Interface Overview

2.1.3 Process Description

2.1.4 Example Code

2.2 Device Login and Logout
2.2.1 Introduction

2.2.2 Interface Overview

2.2.3 Process Description
2.2.4 Example Code
2.3 Getting External Device List
2.3.1 Introduction
2.3.2 Interface Overview

2.3.3 Process Description
2.3.4 Example Code
2.4 Getting Point Information

O O 00 0 N N N N OVt i T A W W W W W NDNDNDNDN-—= =

2.4.1 Introduction

2.4.2 Interface Overview 9
2.4.3 Process Description 10
2.4.4 Example Code 10

2.5 Subscribing to Monitoring Point Alarm 12
2.5.1 Introduction 12
2.5.2 Interface Overview 12
2.5.3 Process Description 13
2.5.4 Example Code 13

2.6 Subscribing to Real-time Information of Monitoring Point 15
2.6.1 Introduction 15
2.6.2 Interface Overview 15
2.6.3 Process Description 15
2.6.4 Example Code 16

2.7 Subscribing to General Alarm 16
2.7.1 Introduction 17
2.7.2 Interface Overview 17
2.7.3 Process Description 18
2.7.4 Example Code 18

3 Interface Function 20

4 Callback

3.1 Initializing NetSDK 20
3.1.1 Init 20
3.1.2 Cleanup 20
3.1.3 SetAutoReconnect 20
3.1.4 SetNetworkParam 21

3.2 Logging in and out 21
3.2.1 LoginWithHighLevelSecurity 21
3.2.2 Logout 22

3.3 Getting External Device List QueryDevState 22

3.4 Getting Point Information SCADAGetAttributelnfo 23

3.5 Subscribing to Monitoring Point Alarm 23
3.5.1 SCADAAlarmAttachinfo 23
3.5.2 SCADAAlarmDetachinfo 23

3.6 Subscribing to Real-time Information of Monitoring Point 24
3.6.1 SCADAAttachinfo 24
3.6.2 SCADADetachlInfo 24

3.7 Reporting Alarm 25
3.7.1 CallbackSetDVRMessCallBack 25
3.7.2 StartListen 25
3.7.3 StoplListen 26

27

4.1 fDisConnectCallBack 27

4.2 fHaveReConnectCallBack 27

4.3 fSCADAAlarmAttachinfoCallBack 27

4.4 fSCADAAttachinfoCallBack 28

4.5 fMessCallBackEx 28

Appendix 1 Cybersecurity Recommendations 30

1 Introduction

1.1 Overview

This document provides reference information of the packaging engineering NetSDKCS for the Ci#
NetSDK library, including main functions, interface functions, and callback.

The main functions include: NetSDK initialization, device login, getting external device list, getting
point information, subscription to monitoring point alarm, subscription to real-time information of
monitoring point, and subscription to device status alarm.

e Forfilesincluded in the C# NetSDK library, see Table 1-1.

Table 1-1 Files in the NetSDK library

Library Type Library File Name Description
dhnetsdk.dll Library file

Function Library
avnetsdk.dll Library file

Configuration Library dhconfigsdk.dll Library file

Playing (Encoding/Decoding) dhplay.dll Play library

Auxiliary Library fisheye.dll Fisheye dewarping library
IvsDrawer.dll Image display library

dhnetsdk Auxiliary Library —
StreamConvertor.dll Transcoding library

e Forfilesincluded in the C# packaging engineering, see Table 1-2.

Table 1-2 Files in the NetSDKCS engineering

File Name File Description
NetSDK.cs For packaging C# interfaces to be called by customers
NetSDKStruct.cs For storing the used structure enumeration.

o For introducing C interfaces in the NetSDK library into the C#
OriginalSDK.cs

L]

e The function library and configuration library of NetSDK are necessary libraries.

engineering.

e The function library is the main body of NetSDK, which is used for communication interaction
between client and products, remote control, search, configuration, acquisition and processing
of stream data.

e NetSDK library is the foundation of NetSDKCS engineering. The reference path of NetSDK library
is defined in the OriginalSDK.cs file. In actual use, put the NetSDK library in the corresponding
path. Users can customize the reference path.

e Customers can directly reference this packaging engineering in their own engineering, or put
the files in the packaging engineering in their own engineering for use, or refer to this
packaging engineering for packaging.

e This document introduces the use of C# engineering that packages the C library interface. For
more information, see the development document in the C NetSDK library.

1.2 System Requirements

Recommended memory: No less than 512 M.
Systems supported by NetSDK: Windows 10/Windows 8.1/Windows 7/Windows Vista/Windows
Server 2008/2003.

1.3 Field Surveillance Unit

Field surveillance unit is an excellent digital surveillance product designed for power and

environment surveillance. The unit uses the embedded stable LINUX operating system.

e It supports protection zone alarm input and output, and the access of 4 mA-20 mA current
sensor and RS-485 bus-based sensor.

e Based on video surveillance and the general H.264 video compression technology and G.711
audio compression technology, an all-around surveillance solution with advanced control
technologies and powerful network data transmission capabilities is provided to integrate alarm
management, power and environment acquisition and control, video surveillance, voice talk
and audio advertisement, network switching, and optical fiber ring network.

e With an embedded design, the unit has high security and reliability.

e The unit can work independently and locally or be connected to the network to form a powerful
security monitoring network.

e Along with professional network video monitoring platform (network) software, the unit has
powerful networking and remote monitoring capabilities.

1.4 Scenes

The unit can be applied to the security in various fields and departments such as energy, natural gas,

mining, telecommunication, power, agriculture, transportation, intelligent communities, factories,

warehouses, resources, and water conservancy facilities.

2 Main Functions

2.1 Initializing NetSDK

2.1.1 Introduction

Initialization is the first step for NetSDK to conduct all the function modules. It does not have the
surveillance function but can set some parameters that affect the SDK overall functions.

e |Initialization occupies some memory.

e Only the first initialization is valid within one process.

e Afterinitialization, call the NetSDK cleaning up interface to release resource.

2.1.2 Interface Overview

Table 2-1 Description of NetSDK initialization interfaces

Interface Description

NETClient.Init NetSDK initialization interface
NETClient.Cleanup NetSDK cleaning up interface
NETClient.SetAutoReconnect Setting of reconnection callback interface
NETClient.SetNetworkParam Setting of login network environment interface

2.1.3 Process Description

Figure 2-1 Process of NetSDK initialization

=

A 4

SDK initialization

NETClientint [— — — — T T T T 1
————— N -
Set reconnection callback |
| NETClient.SetAutoReconnect |
[| ______
————- N -
Set network parameters |
| NETClient.SetNetworkParam I
[
v [
Release SDK resource (— — — — — — — — _I
NETClient.Cleanup
v Required
End r— - =
| | Optional

L]

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.
(Optional) Call NETClient.SetAutoReconnect to set reconnection callback to allow the auto
reconnecting after disconnection within NetSDK.

(7]

—
F

N

(7]

—
F

w

(Optional) Call NETClient.SetNetworkParam to set network login parameters, which
include the timeout period for device login and the number of attempts.
After using all functions of NetSDK, call NETClient.Cleanup to release NetSDK resource.

wn

—+
F

IS

Notes

® You need to call the interfaces NETClient.Init and NETClient.Cleanup in pairs. NetSDK
supports single-thread multiple calling in pairs, but it is suggested to call the pair for only one
time globally.

e Initialization: Calling NETClient.Init multiple times is only for internal count without repeating
requesting resources.

e (leaning up: The interface NETClient.Cleanup clears all the opened processes, such as login,
real-time monitoring, and alarm subscription.

e Reconnection: NetSDK can set the reconnection function for the situations such as network
disconnection and power off. NetSDK will keep logging in until succeeded. Only the real-time
monitoring, playback, subscription to intelligent event, and alarm subscription can be restored
after reconnection.

2.1.4 Example Code

//Declare static callback delegation (an error of releasing before callback might occur for ordinary
delegation)

private static fDisConnectCallBack m_DisConnectCallBack; // Disconnection callback

private static fHaveReConnectCallBack m_ReConnectCallBack; // Reconnection callback

// Commission
m_DisConnectCallBack = new fDisConnectCallBack(DisConnectCallBack);
m_ReConnectCallBack = new fHaveReConnectCallBack(ReConnectCallBack);

//Initialize NetSDK. Disconnection callback is implemented during initialization.
bool result = NETClient.Init(m_DisConnectCallBack, IntPtr.Zero, null);

if (Iresult)

{

MessageBox.Show(NETClient.GetLastError());//Display error message.

return;

}

//Set reconnection callback.
NETClient.SetAutoReconnect(m_ReConnectCallBack, IntPtr.Zero);

// Set network parameters.

NET_PARAM param = new NET_PARAM()

{

nWaittime = 10000,// Waiting timeout period (ms)
nConnectTime = 5000,// Connection timeout period (ms)
L

NETClient.SetNetworkParam(param);

// Clean up initialization resource.
NETClient.Cleanup();

2.2 Device Login and Logout

2.2.1 Introduction

Device login, also called user authentication, is the precondition of all the other function modules.

You can obtain a unique login ID upon logging in to the device and should pass in the login ID
before using other NetSDK interfaces. The login ID becomes invalid once logged out.

2.2.2 Interface Overview

Table 2-2 Description of device login interfaces

Interface Description
NETClient.LoginWithHighLevelSecurity Login interface
NETClient.Logout Logout interface

2.2.3 Process Description

Figure 2-2 Process of login

(-)
v

SDK initialization
NETClient.Init

v

Log in to the device
NETClient.LoginWithHighLevelSecurity

v

Specific function module

v

Log out of the device
NETClient.Logout

v

Release SDK resource
NETClient.Cleanup

v

)

Process Description

Notes

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step 3 After successful login, you can realize the required function module.

Step 4 After using the function, call NETClient.Logout to log out of the device.

Step 5 After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

e Login handle: When the login is successful, the returned value of the interface is not 0 (even the
handle is smaller than 0, the login is also successful). One device can log in multiple times with
different handle at each login. If there is not special function module, it is suggested to log in
only one time. The login handle can be repeatedly used on other function modules.

e Handle repetition: The login handle might be the same as an existing handle, which is normal.
For example, if you log in to Device A and get loginIlDA, then cancel loginlDA. When you log in
again, you might get LoginIDA again. However, throughout the life cycle of a handle, the same
handle will not appear.

e Logout: The interface will release the opened functions in the login session internally, but it is
not suggested to rely on the cleaning up function of the logout interface. For example, if you
opened the monitoring function, you should call the interface that stops the monitoring
function when it is no longer required.

e Use login and logout in pairs: The login consumes some memory and socket information and
releases sources once logged out.

e Login failure: Call NETClient.GetLastError to get failure information.

e After the device is disconnected, the login ID of the device is invalid, and will become valid after

the device is reconnected.

2.2.4 Example Code

// Log in to the device.

NET_DEVICEINFO_Ex m_Devicelnfo = new NET_DEVICEINFO_Ex();
IntPtr m_LoginID = NETClient.LoginWithHighLevelSecurity(ip, port, name, password,
EM_LOGIN_SPAC_CAP_TYPE.TCP, IntPtr.Zero, ref m_Devicelnfo);

if (IntPtr.Zero == m_LoginID)

MessageBox.Show(this, NETClient.GetLastError());

{
MessageBox.Show(this, NETClient.GetLastError());
return;
}
// Log out of the device.
if (IntPtr.Zero = m_LoginID)
{
bool result = NETClient.Logout(m_LoginID);
if (Iresult)
{
return;
}
m_LoginID = IntPtr.Zero;
}

2.3 Getting External Device List

2.3.1 Introduction

Get the ID of devices that are connected to the unit.

2.3.2 Interface Overview

Table 2-3 Description of the interface for getting external device list

Interface

Description

NETClient.QueryDevState

Get the ID of external devices that are connected to the current host.

2.3.3 Process Description

Figure 2-3 Process of getting external device list

G

Y

SDK initialization
NETClient.Init

\ 4

Log in to the device
NETClient.LoginWithHighLevelSecurity

\ 4

Getthe ID of extemal devices connected to the current host
NETClient.QueryDevState
nType:EM_DEVICE_STATE.SCADA_DEVICE_LIST

\ 4

Log out of the device
NETClient.Logout

\ 4

Release SDK resource
NETClient.Cleanup

G

Process Description

Step 1
Step 2
Step 3

Call NETClient.Init to initialize NetSDK.

Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.QueryDevState to get the external device list. The parameter nType value is
EM_DEVICE_STATE.SCADA_DEVICE_LIST, and the corresponding structure is
NET_SCADA_DEVICE_LIST.

After using the function, call NETClient.Logout to log out of the device.

After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

2.3.4 Example Code

List<NET_SCADA_DEVICE_ID_INFO> devicelnfo_list = new List<NET_SCADA_DEVICE_ID_INFO>();

NET_SCADA_DEVICE_LIST device_list = new NET_SCADA_DEVICE_LIST();
device_list.dwSize = (uint)Marshal.SizeOf(typeof(NET_SCADA_DEVICE_LIST));
device_list.nMax = 64;

device_list.pstuDevicelDInfo = IntPtr.Zero;

device_list.pstuDevicelDInfo =
Marshal.AllocHGlobal(Marshal.SizeOf(typeof(NET_SCADA_DEVICE_ID_INFQ)) * device_list.nMax);

NET_SCADA_DEVICE_ID_INFO[] array_deviceinfo = new NET_SCADA_DEVICE_ID_INFO[64];
for (inti=0;i < 64; i++)
{
array_deviceinfo[i] = new NET_SCADA_DEVICE_ID_INFO();
Marshal.StructureToPtr(array_deviceinfolil, IntPtr.Add(device_list.pstuDevicelDInfo, i *
Marshal.SizeOf(typeof(NET_SCADA_DEVICE_ID_INFO))), true);
}

object objlnfo = device_list;
bool ret = NETClient.QueryDevState(m_LoginID, EM_DEVICE_STATE.SCADA_DEVICE_LIST, ref objinfo,
typeof(NET_SCADA_DEVICE_LIST), 10000);
if (ret)
{
MessageBox.Show(NETClient.GetLastError());
return;

else
device_list = (NET_SCADA_DEVICE_LIST)objlnfo;
for (inti=0;i < device_list.nRet; i++)

{
var devicelnfo_item =
(NET_SCADA_DEVICE_ID_INFO)Marshal.PtrToStructure(IntPtr.Add(device_list.pstuDevicelDInfo, i *
Marshal.SizeOf(typeof(NET_SCADA_DEVICE_ID_INFQ))), typeof(NET_SCADA_DEVICE_ID_INFO));
devicelnfo_list.Add(devicelnfo_item);

2.4 Getting Point Information

2.4.1 Introduction

Get the corresponding monitoring point information according to the ID of each device on the
power and environment host.

2.4.2 Interface Overview

Table 2-4 Description of the interface for getting point information

‘ Interface Description

Interface Description

NETClient.SCADAGetAttributelnfo Get device point information.

2.4.3 Process Description

Figure 2-4 Process of getting point information
(Start)

SDK initialization
NETClient.Init

v

Log in to the device
NETClient.LoginWithHighLevelSecurity

v

Get the monitoring point information corresponding to the extemal device
ID (which should be inputin the search condition)
NETClient. SCADA GetAttributelnfo

v

Log out of the device
NETClient.Logout

v

Release SDK resource
NETClient.Cleanup

|
I

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 After initialization, call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step3 Call NETClient.SCADAGetAttributelnfo to get the monitoring point information
corresponding to the external device ID, which is obtained by inputting
NETClient.QueryDevState in szDevicelD of the search condition stuCondition.

Step 4 After using the function, call NETClient.Logout to log out of the device.

Step 5 After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

2.4.4 Example Code

NET_IN_SCADA_GET_ATTRIBUTE_INFO stuAttributelnfoln = new
NET_IN_SCADA_GET_ATTRIBUTE_INFO();
stuAttributelnfoln.dwsSize = (uint)Marshal.SizeOf(typeof(NET_IN_SCADA_GET_ATTRIBUTE_INFO));

10

stuAttributelnfoln.stuCondition = new NET_GET_CONDITION_INFO();
stuAttributelnfoln.stuCondition.szDevicelD = "****#**".

NET_OUT_SCADA_GET_ATTRIBUTE_INFO stuAttributeInfoOut = new
NET_OUT_SCADA_GET_ATTRIBUTE_INFO();

stuAttributelnfoOut.dwSize =
(uint)Marshal.SizeOf(typeof(NET_OUT_SCADA_GET_ATTRIBUTE_INFOQ));
stuAttributelnfoOut.nMaxAttributelnfoNum = 20;
stuAttributelnfoOut.pstuAttributelnfo = IntPtr.Zero;
stuAttributelnfoOut.pstuAttributelnfo =
Marshal.AllocHGlobal((int)(Marshal.SizeOf(typeof(NET_ATTRIBUTE_INFO)) *
stuAttributelnfoOut.nMaxAttributelnfoNum));

NET_ATTRIBUTE_INFOI] array_attributelnfo = new
NET_ATTRIBUTE_INFOI[stuAttributelnfoOut.nMaxAttributelnfoNum];
for (int index = 0; index < stuAttributelnfoOut.nMaxAttributeInfoNum; index++)
{
IntPtr pIndexBuf = IntPtr.Add(stuAttributelnfoOut.pstuAttributelnfo, index *
Marshal.SizeOf(typeof(NET_ATTRIBUTE_INFO)));
Marshal.StructureToPtr(array_attributelnfolindex], pIndexBuf, true);

IntPtr pstinParam = IntPtr.Zero;
pstinParam = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(NET_IN_SCADA_GET_ATTRIBUTE_INFO)));
Marshal.StructureToPtr(stuAttributelnfoln, pstinParam, true);

IntPtr pstOutParam = IntPtr.Zero;

pstOutParam =
Marshal.AllocHGlobal(Marshal.SizeOf(typeof(NET_OUT_SCADA_GET_ATTRIBUTE_INFQ)));
Marshal.StructureToPtr(stuAttributelnfoOut, pstOutParam, true);

bool ret = NETClient. SCADAGetAttributelnfo(m_LoginID, pstinParam, pstOutParam, 5000);
if (Iret)
{

MessageBox.Show(NETClient.GetLastError());

return;

else

var attribute_info =
(NET_OUT_SCADA_GET_ATTRIBUTE_INFO)Marshal.PtrToStructure(pstOutParam,
typeof(NET_OUT_SCADA_GET_ATTRIBUTE_INFO));
if (attribute_info.nRetAttributelnfoNum > 0)
{
for (int j = 0; j < attribute_info.nRetAttributelnfoNum; j++)
{

11

var attributelnfo_item =

(NET_ATTRIBUTE_INFO)Marshal.PtrToStructure(IntPtr.Add(attribute_info.pstuAttributelnfo,
Marshal.SizeOf(typeof(NET_ATTRIBUTE_INFO)) * j), typeof(NET_ATTRIBUTE_INFO));

}

Marshal.FreeHGlobal(pstinParam);
pstinParam = IntPtr.Zero;

Marshal.FreeHGlobal(pstOutParam);

pstOutParam = IntPtr.Zero;

2.5 Subscribing to Monitoring Point Alarm

2.5.1 Introduction

Monitor the alarm information of each monitoring point.

2.5.2 Interface Overview

Table 2-5 Description of the monitoring point alarm interface

Interface

Description

NETClient.SCADAAlarmAttachinfo

Subscribe to monitoring point alarm information.

NETClient.SCADAAlarmDetachInfo

Unsubscribe from monitoring point alarm information.

12

2.5.3 Process Description

Figure 2-5 Process of subscription to monitoring point alarm

=

Y

SDK initialization
NETClient.Init

\ 4

Log in to the device
NETClient.LoginWithHighLevelSecurity

Y

Subscribe to monitoring point alarm information Alarm callback
NETClient. SCADAAlarmAttachInfo fSCADAAIlarmAttachinfoCallBack

\ 4

A 4

Unsubscribe from monitoring point alarm information
NETClient. SCADAAlarmDetachInfo

\ 4

Log out of the device
NETClient.Logout

Y

Release SDK resource
NETClient.Cleanup

S

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

After initialization, call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.SCADAAlarmAttachinfo to subscribe to alarm from the device. The
corresponding input and output structures are NET_IN_SCADA_ALARM_ATTACH_INFO and
NET_OUT_SCADA_ALARM_ATTACH_INFO. After subscription, users are notified of the alarm
events reported by the device through the callback function cbCallBack set in the
NET_IN_SCADA_ALARM_ATTACH_INFO structure.

After using the alarm reporting function, call NETClient.SCADAAlarmDetachinfo to stop

[N
— =+
Fk
w N

t

w
D
IS

subscribing to alarm from the device.
After using the function, call NETClient.Logout to log out of the device.
After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

(V]

—
F

[9,]

t

[Va]
1)
[e)}

2.5.4 Example Code

// Declare static callback delegation.

13

private static fSCADAAlarmAttachinfoCallBack m_SCADAAlarmAttachinfoCallBack = new
fSCADAAlarmAttachinfoCallBack(SCADAAlarmAttachinfoCallBack);

// Subscribe to alarms

NET_IN_SCADA_ALARM_ATTACH_INFO inInfo = new NET_IN_SCADA_ALARM_ATTACH_INFO();
inlnfo.dwSize = (uint)Marshal.SizeOf(typeof(NET_IN_SCADA_ALARM_ATTACH_INFO));
inInfo.cbCallBack = m_SCADAAlarmAttachinfoCallBack;

NET_OUT_SCADA_ALARM_ATTACH_INFO outInfo = new NET_OUT_SCADA_ALARM_ATTACH_INFO();
outinfo.dwSize = (uint)Marshal.SizeOf(typeof(NET_OUT_SCADA_ALARM_ATTACH_INFO));

m_AttachAlarm = NETClient.SCADAAlarmAttachinfo(m_LoginID, ininfo, outinfo, 3000);
if (IntPtr.Zero == m_AttachAlarm)
{

MessageBox.Show(this, NETClient.GetLastError());

return;

// Unsubscribe from alarms
bool ret = NETClient.SCADAAlarmDetachInfo(m_AttachAlarm);
if (ret)
{
MessageBox.Show(this, NETClient.GetLastError());
return;
}
m_AttachAlarm = IntPtr.Zero;

// Handle alarm callback

private void SCADAAlarmAttachinfoCallBack(IntPtr IAttachHandle, IntPtr pInfo, int nBufLen, IntPtr
dwUser)

{

NET_SCADA_NOTIFY_POINT_ALARM_INFO_LIST info =
(NET_SCADA_NOTIFY_POINT_ALARM_INFO_LIST)Marshal.PtrToStructure(plnfo,
typeof(NET_SCADA_NOTIFY_POINT_ALARM_INFO_LIST));

for (inti=0;i < info.nList; i++)

{
Console.WriteLine(info.stuList[i].szDevID);
Console.WriteLine(info.stuList[i].szPointID);

14

2.6 Subscribing to Real-time Information of Monitoring

Point

2.6.1 Introduction

Monitor the general information upload of each monitoring point.

2.6.2 Interface Overview

Table 2-6 Monitoring point information

Interface Description

Subscribe to real-time Information of
NETClient.SCADAAttachinfo o)
monitoring point.

Unsubscribe from monitoring point
NETClient.SCADADetachInfo .)
information.

2.6.3 Process Description

Figure 2-6 Process of subscription to real-time information of monitoring point

=)

SDK initialization
NETClient.Init

Y

Log in to the device
NETClient.LoginWithHighLevelSecurity

|

Subscribe to monitoring point information Alarm callback
NETClient. SCADAAttachinfo fSCADAAttachinfoCallBack

A\ 4

\ 4

Stop subscribing to monitoring point information
NETClient. SCADADetachinfo

Y

Log out of the device
NETClient.Logout

\ 4

Release SDK resource
NETClient.Cleanup

v

-

15

Process Description

Step 1
Step 2
Step 3

t

w
D
IS

t
t

|
@ |
[0)N{Vy]

Call NETClient.Init to initialize NetSDK.

After initialization, call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.SCADAAttachInfo to subscribe to alarm from the device. The corresponding
input and output structures are NET_IN_SCADA_ATTACH_INFO and
NET_OUT_SCADA_ATTACH_INFO. After successful subscription, alarm events reported by
the device are notified to you through the callback cbCallBack set in the
NET_IN_SCADA_ATTACH_INFO structure.

After using the alarm reporting function, call NETClient.SCADADetachinfo to stop
subscribing to alarm from the device.

After using the function, call NETClient.Logout to log out of the device.

After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

2.6.4 Example Code

// Declare static callback delegation.
private static fSCADAAttachinfoCallBack m_SCADAAttachinfoCallBack = new
fSCADAAttachinfoCallBack(SCADAAttachInfoCallBack);

// Subscribe to real-time information

NET_IN_SCADA_ATTACH_INFO inInfo = new NET_IN_SCADA_ATTACH_INFO();
inInfo.dwSize = (uint)Marshal.SizeOf(typeof(NET_IN_SCADA_ATTACH_INFO));
inInfo.cbCallBack = m_SCADAAttachinfoCallBack;

inInfo.emPointType = EM_NET_SCADA_POINT_TYPE.ALL;

NET_OUT_SCADA_ATTACH_INFO outlnfo = new NET_OUT_SCADA_ATTACH_INFO();
outinfo.dwSize = (uint)Marshal.SizeOf(typeof(NET_OUT_SCADA_ATTACH_INFO));

m_Attachinfo = NETClient.SCADAAttachinfo(m_LoginID, inInfo, outinfo, 3000);
if (IntPtr.Zero == m_Attachinfo)

{

MessageBox.Show(this, NETClient.GetLastError());
return;

// Unsubscribe from real-time information
bool ret = NETClient.SCADADetachInfo(m_Attachinfo);

if (ret)
{

MessageBox.Show(this, NETClient.GetLastError());
return;

}

m_AttachInfo = IntPtr.Zero;

// Handle alarm callback

16

private void SCADAAttachinfoCallBack(IntPtr ILoginID, IntPtr IAttachHandle, IntPtr pInfo, int nBufLen,
IntPtr dwUser)
{

NET_SCADA_NOTIFY_POINT_INFO_LIST info =
(NET_SCADA_NOTIFY_POINT_INFO_LIST)Marshal.PtrToStructure(pinfo,
typeof(NET_SCADA_NOTIFY_POINT_INFO_LIST));

for (inti=0;i < info.nList; i++)

{
Console WriteLine(info.stuList[i]l.szDevName);
Console WriteLine(info.stuList[i].szPointName);
Console.WriteLine(info.stuList[i]l.emPointType.ToString());
}

2.7 Subscribing to General Alarm

2.7.1 Introduction
Alarm reporting method: Use NetSDK to log in to the device and subscribe to the alarm function

from the device. When the device detects an alarm event, it will send the event to NetSDK
immediately. You can get the corresponding alarm information through the alarm callback.

2.7.2 Interface Overview

Table 2-7 Description of alarm reporting interfaces

Interface Description
NETClient.SetDVRMessCallBack Set alarm callback interface.
NETClient.StartListen Extension interface for subscribing to alarm.
NETClient.StopListen Unsubscribe from alarm.

17

2.7.3 Process Description

Figure 2-7 Process of subscription to general alarm

—

A4

SDK initialization
NETClient.Init

A4

Set alarm callback Alarm callback
NETClient.SetDVRMessCallBack fMessCallBackEx

A\ 4

A4

Log in to the device
NETClient.LoginWithHighLevelSecurity

A4

Subscribe to alarm from the device
NETClient.StartListen

A4

Stop subscribing to alarm from the device
NETClient.StopListen

A4

Log out of the device
NETClient.Logout

A4

Release SDK resource
NETClient.Cleanup

S

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Call NETClient.SetDVRMessCallBack to set alarm callback. This interface should be called
before alarm subscription.

Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.StartListen to subscribe to alarm from the device. After successful
subscription, alarm events reported by the device are notified to you through the callback
set by NETClient.SetDVRMessCallBack.

After using the alarm reporting function, call NETClient.StopListen to stop subscribing to

[¥4]

—
F

N

|
-+ |~
FF
W

te

:

alarm from the device.
te Call NETClient.Logout to log out of the device.

After using NetSDK, call NETClient.Cleanup to release NetSDK resource.

:

te

g

2.7.4 Example Code

// Declare static callback delegation.

18

private static fMessCallBackEx m_AlarmCallBack;
m_AlarmCallBack = new fMessCallBackEx(AlarmCallBackEx);

// Configure alarm callback.
NETClient.SetDVRMessCallBack(m_AlarmCallBack, IntPtr.Zero);

// Process alarm callback.
private bool AlarmCallBackEx(int ICommand, IntPtr ILoginID, IntPtr pBuf, uint dwBufLen, IntPtr
pchDVRIP, int nDVRPort, bool bAlarmAckFlag, int nEventID, IntPtr dwUser)
{

EM_ALARM_TYPE type = (EM_ALARM_TYPE)ICommand;

switch (type)

{

case EM_ALARM_TYPE.ALARM_SCADA_DEV_ALARM:
NET_ALARM_SCADA_DEV_INFO info =

(NET_ALARM_SCADA_DEV_INFO)Marshal.PtrToStructure(pBuf,
typeof(NET_ALARM_SCADA_DEV_INFQ));

Console.WriteLine(info.nChannel.ToString());
Console.WriteLine(info.stuTime.ToString());
Console.WriteLine(info.szDevName);
break;

default:
break;

return true;
}
// Subscribe to alarm.
bool ret = NETClient.StartListen(m_LoginID);
if (Iret)
{
MessageBox.Show(this, NETClient.GetLastError());
return;
}
// Unsubscribe from alarm.
bool ret = NETClient.StopListen(m_LoginID);
if (Iret)
{
MessageBox.Show(this, NETClient.GetLastError());
return;

}

19

3 Interface Function

3.1 Initializing NetSDK

3.1.1 Init

Table 3-1 NetSDK Initialization Init

Item Description
Description Initialize the NetSDK.
bool Init(

fDisConnectCallBack cbDisConnect,
Function IntPtr dwUser,
NETSDK_INIT_PARAM? stulnitParam

’

)
[in]cbDisConnect Disconnection callback.
Parameter [inldwUser User parameters for disconnection callback.
[in]stulnitParam NetSDK initialization parameter.
® Success: true.
Return Value)
e Failure: false.

Prerequisite for calling other functions of the network NetSDK.
When the callback is set as NULL, the device will not be called back to the
user after disconnection.

Description) o . i
e The dwUser parameter input by Init will be returned in the same field dwUser

within the callback cbDisConnect. This helps to position. The same applies to
other functions.

3.1.2 Cleanup

Table 3-2 NetSDK Cleanup

Item Description

Description Clean up NetSDK.

Function void Cleanup().

Parameter None.

Return Value None.

Description NetSDK cleaning up interface is finally called before the end.

3.1.3 SetAutoReconnect

Table 3-3 Set reconnection callback SetAutoReconnect

Item Description

Description Set auto reconnection callback.

20

Item Description

void SetAutoReconnect(

. fHaveReConnectCallBack cbAutoConnect,
Function
IntPtr dwUser

)i

[inlcbAutoConnect Reconnection callback.
Parameter

[inldwUser

User parameters for reconnection callback.

Return Value

None.

Description

Set reconnection callback interface. If the callback is set as NULL, the device will not

be reconnected automatically.

3.1.4 SetNetworkParam

Table 3-4 Set network parameters SetNetworkParam

Item Description

Description Set related parameters of network environment.

Function void SetNetworkParam(NET_PARAM? netParam);

Parameter linJnetParam Network delay, number of reconnections, buffer size

and other parameters.

Return Value

None.

Description

You can adjust parameters according to the actual network environment.

3.2 Logging in and out

3.2.1 LoginWithHighLevelSecurity

Table 3-5 Log in to device LoginWithHighLevelSecurity

Item Description
Description The user logs in to the device.
IntPtr LoginWithHighLevelSecurity(
string pchDVRIP,
ushort wDVRPort,
string pchUserName,
Function string pchPassword,
EM_LOGIN_SPAC_CAP_TYPE emSpecCap,
IntPtr pCapParam,
ref NET_DEVICEINFO_Ex devicelnfo
);
[in]pchDVRIP Device IP.
[inlwDVRPort Device port.
Parameter [in]pchUserName Username.
[in]pchPassword Password.
[inlemSpecCap Login category.

21

Item Description

[in]pCapParam Login category parameter.

[out]devicelnfo Device information.

® Success: Non-0.
Return Value i
e Failure: 0.

Description None.
3.2.2 Logout
Table 3-6 Log out ofdDevice Logout
Item Description
Description The user logs out of the device.
bool Logout(
Function IntPtr ILoginID
);
Parameter [in]lLoginID Return value of NETClient.LoginWithHighLevelSecurity.

Return Value Return false for failure and true for success.

Description None.

3.3 Getting External Device List QueryDevState

Table 3-7 Get list of external devices QueryDevState

Item Description
Description Get the list of external devices that are connected to the current host.
bool QueryDevState(
IntPtr ILoginID,
int nType,
Function ref object obj,
Type typeName,
int waittime
);
[in]lLoginID Return value of NETClient.LoginWithHighLevelSecurity.
i Search for information type. When getting the external
linlnType I ,
device list, nType is EM_DEVICE_STATE.SCADA_DEVICE_LIST.
Parameter . Cache for receiving data returned by the search,
[outlobj corresponding to the NET_SCADA_DEVICE_LIST structure.
[in]ltypeName Search for structure type.
[in]lwaittime Waiting time in search status.
Return Value ® Success: true.
® Failure: false.
Description None.

22

3.4 Getting Point Information SCADAGetAttributelnfo

Table 3-8 Get Device Point Information SCADAGetAttributelnfo

Item Description
Description Get device point information.
bool SCADAGetAttributelnfo(
IntPtr ILoginID,
. IntPtr pstinParam,
Function
IntPtr pstOutParam,
int nWaitTime
);
[in]lLoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in]pstinParam Input parameter.
Parameter
[out]pstOutParam Output parameter.
[inlnWaitTime Waiting time in search status.
® Success: Non-0.
Return Value
e Failure: 0.
Description None.

3.5 Subscribing to Monitoring Point Alarm

3.5.1 SCADAAIlarmAttachinfo

Table 3-9 Subscribe to Monitoring Point Alarm Information SCADAAlarmAttachinfo

Item Description
Description Subscribe to monitoring point alarm information.
IntPtr SCADAAIlarmAttachInfo(
IntPtr ILoginID,
Function NET_IN_SCADA_ALARM_ATTACH_INFO pInParam,
NET_OUT_SCADA_ALARM_ATTACH_INFO pOutParam,
int nWaitTime = 3000
);
[in]lLoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in]lplnParam Subscription input parameter.
Parameter
[out]pOutParam Subscription output parameter.
[in]waittime Waiting time.
Return Value ® Success: Non-0.
e Failure: 0.
Description None

3.5.2 SCADAAlarmDetachinfo

Table 3-10 Unsubscribe from Point Alarm Information SCADAAlarmDetachInfo

23

Item Description
Description Unsubscribe from point alarm information.
bool SCADAAlarmDetachlInfo(
Function IntPtr IAttachHandle
)
Parameter [in]IAttachHandle Return value of NETClient.SCADAAlarmAttachinfo

Return Value

Return false for failure and true for success.

Description

None.

3.6 Subscribing to Real-time Information of Monitoring

Point

3.6.1 SCADAAttachinfo

Table 3-11 Subscribe to Real-time Information of Monitoring Point SCADAAttachinfo

Item Description
Description Subscribe to real-time information of monitoring point.
IntPtr SCADAAttachinfo(
IntPtr ILoginID,
. NET_IN_SCADA_ATTACH_INFO pInParam,
Function
NET_OUT_SCADA_ATTACH_INFO pOutParam,
int nWaitTime
);
[in]lLoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in]lplnParam Subscription input parameter.
Parameter
[out]pOutParam Subscription output parameter.
[in]waittime Waiting time.

Return Value

® Success: Non-0.
e Failure: 0.

Description

None.

3.6.2 SCADADetachinfo

Table 3-12 Unsubscribe from Point Information SCADADetachInfo

Item Description
Description Unsubscribe from point information.
bool SCADADetachInfo(
Function IntPtr IAttachHandle
);
Parameter [in]IAttachHandle Return value of NETClient.SCADAAttachlinfo.

Return Value

) Success: true.
o Failure: false.

24

Item Description

Description None.

3.7 Reporting Alarm

3.7.1 CallbackSetDVRMessCallBack

Table 3-13 Set alarm callback SetDVRMessCallBack

Item Description
Description Set alarm callback.
void SetDVRMessCallBack(
. fMessCallBackEx cbMessage,
Function
IntPtr dwUser
);
® Message callback, which can call back the device
) status, such as alarm status.
[inlcbMessage i . .
Parameter ® When the value is set as 0, it means callback is
forbidden.
[inJdwUser User-defined data.
Return
None.
Value
e Set device message callback to get the current device status information; this
function is independent of the calling sequence, and the NetSDK is not called
Description back by default.
o The callback fMessCallBack must call the alarm message subscription interface
StartListen first before it takes effect.

3.7.2 StartListen

Table 3-14 Subscribe to alarm StartListen

Item Description
Description Subscribe to alarm.
bool StartListen(
Function IntPtr ILoginID
);
Parameter [in]ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Return ® Success: true.
Value ® Failure: false.
Subscribe to device message, and the message received is called back from the set
Description
value of SetDVRMessCallBack.

25

3.7.3 StoplListen

Table 3-15 Unsubscribe from alarm StopListen

Item Description
Description Stop subscribing to alarm.
bool StopListen(
Function IntPtr ILoginID
);
Parameter [in]ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Return Value ® Success: true.
e Failure: false.
Description None.

26

4 Callback

4.1 fDisConnectCallBack

Table 4-1 Disconnection callback fDisConnectCallBack

Item Description
Description Disconnection callback
public delegate void fDisConnectCallBack(
IntPtr ILoginID,
. IntPtr pchDVRIP,
Function
int nDVRPort,
IntPtr dwUser
)i
[out]lLoginID Return value of NETClient.LoginWithHighLevelSecurity
[out]pchDVRIP Disconnected device IP
Parameter
[outlInDVRPort Disconnected device port
[outldwUser User parameters for callback
Return Value None
Description None

4.2 fHaveReConnectCallBack

Table 4-2 Reconnection callback fHaveReConnectCallBack

Item Description
Description Reconnection callback
public delegate void fHaveReConnectCallBack(
IntPtr ILoginID,
. IntPtr pchDVRIP,
Function
int nDVRPort,
IntPtr dwUser
);
[out]lLoginID Return value of NETClient.LoginWithHighLevelSecurity
[out]pchDVRIP Reconnected device IP
Parameter
[outInDVRPort Reconnected device port
[out]ldwUser User parameters for callback
Return Value None
Description None

4.3 fSCADAAlarmAttachinfoCallBack

Table 4-3 Monitoring point alarm information callback fSCADAAlarmAttachinfoCallBack

27

Item Description
Description Monitoring point alarm information callback
public delegate void fSCADAAlarmAttachinfoCallBack(
IntPtr IAttachHandle,
. IntPtr pinfo,
Function
int nBufLen,
IntPtr dwUser
)i
[out]lAttachHandle Return value of NETClient. SCADAAlarmAttachinfo
[out]pInfo Alarm message data block address
Parameter
[out]nBufLen Length of alarm message data block, in bytes
[outldwUser User parameters for callback
Return Value None
Description None

4.4 fSCADAAttachinfoCallBack

Table 4-4 Monitoring point information callback fSCADAAttachinfoCallBack

Item Description
Description Monitoring point information callback
public delegate void fSCADAAttachInfoCallBack(
IntPtr ILoginID,
IntPtr IAttachHandle,
Function IntPtr pinfo,
int nBuflLen,
IntPtr dwUser
);
[out]lLoginID Return value of NETClient.LoginWithHighLevelSecurity
[out]lAttachHandle Return value of NETClient. SCADAAttachInfo
Parameter [out]pInfo Reported information data block address
[out]nBufLen Length of reported information data block, in bytes
[out]ldwUser User parameters for callback
Return Value None
Description None

4.5 fMessCallBackEx

Table 4-5 Alarm callback fMessCallBackEx

Item

Description

Description

Alarm callback

28

Item Description
public delegate bool fMessCallBackEx(
int ICommand,
IntPtr ILoginID,
IntPtr pBuf,
uint dwBuflLen,
Function IntPtr pchDVRIP,
int nDVRPort,
bool bAlarmAckFlag,
int nEventID,
IntPtr dwUser
);
[out]lCommand Alarm type. For details, see Table 4-6
[out]lLoginID Return value of login interface
Buffer that receives alarm data, which is filled with different
[out]pBuf data according to different listening interfaces called and
ICommand values
[out]ldwBufLen Length of pBuf, in bytes
Parameter
[out]pchDVRIP Device ip
[out]nDVRPort Port
e TRUE:This event can be confirmed.
[out]lbAlarmAckFlag
e FALSE: This event cannot be confirmed.
[out]nEventID Return event ID
[out]dwUser User-defined data
e TRUE: Callback is executed correctly
Return Value
® FALSE: Execution error
Description Usually, call the set callback during application initialization, and process properly in
the callback according to different device ID and command values
Table 4-6 Alarm type description
Alarm Type Name pBuf

Detection and
acquisition device alarm | NET_ALARM_SCADA_DEV_INFO structure
event

ALARM_SCADA_DEV_
ALARM

29

Appendix 1 Cybersecurity Recommendations

Cybersecurity is more than just a buzzword: it's something that pertains to every device that is

connected to the internet. IP video surveillance is not immune to cyber risks, but taking basic steps

toward protecting and strengthening networks and networked appliances will make them less

susceptible to attacks. Below are some tips and recommendations on how to create a more secured

security system.

Mandatory actions to be taken for basic device network security:

1.

Use Strong Passwords

Please refer to the following suggestions to set passwords:

o Thelength should not be less than 8 characters;

e Include at least two types of characters; character types include upper and lower case
letters, numbers and symbols;

e Do not contain the account name or the account name in reverse order;

e Do not use continuous characters, such as 123, abg, etc,;

o Do not use overlapped characters, such as 111, aaa, etc,;

Update Firmware and Client Software in Time

o According to the standard procedure in Tech-industry, we recommend to keep your device
(such as NVR, DVR, IP camera, etc.) firmware up-to-date to ensure the system is equipped
with the latest security patches and fixes. When the device is connected to the public
network, it is recommended to enable the “auto-check for updates” function to obtain
timely information of firmware updates released by the manufacturer.

e We suggest that you download and use the latest version of client software.

"Nice to have" recommendations to improve your device network security:

1.

Physical Protection

We suggest that you perform physical protection to device, especially storage devices. For
example, place the device in a special computer room and cabinet, and implement well-done
access control permission and key management to prevent unauthorized personnel from
carrying out physical contacts such as damaging hardware, unauthorized connection of
removable device (such as USB flash disk, serial port), etc.

Change Passwords Regularly

We suggest that you change passwords regularly to reduce the risk of being guessed or cracked.
Set and Update Passwords Reset Information Timely

The device supports password reset function. Please set up related information for password
reset in time, including the end user’s mailbox and password protection questions. If the
information changes, please modify it in time. When setting password protection questions, it is
suggested not to use those that can be easily guessed.

Enable Account Lock

The account lock feature is enabled by default, and we recommend you to keep it on to
guarantee the account security. If an attacker attempts to log in with the wrong password
several times, the corresponding account and the source IP address will be locked.

Change Default HTTP and Other Service Ports

We suggest you to change default HTTP and other service ports into any set of numbers
between 1024~65535, reducing the risk of outsiders being able to guess which ports you are
using.

30

10.

11.

12.

13.

Enable HTTPS

We suggest you to enable HTTPS, so that you visit Web service through a secure communication

channel.

MAC Address Binding

We recommend you to bind the IP and MAC address of the gateway to the device, thus reducing

the risk of ARP spoofing.

Assign Accounts and Privileges Reasonably

According to business and management requirements, reasonably add users and assign a

minimum set of permissions to them.

Disable Unnecessary Services and Choose Secure Modes

If not needed, it is recommended to turn off some services such as SNMP, SMTP, UPnP, etc,, to

reduce risks.

If necessary, it is highly recommended that you use safe modes, including but not limited to the

following services:

® SNMP: Choose SNMP v3, and set up strong encryption passwords and authentication
passwords.

® SMTP: Choose TLS to access mailbox server.

e FTP:Choose SFTP, and set up strong passwords.

o AP hotspot: Choose WPA2-PSK encryption mode, and set up strong passwords.

Audio and Video Encrypted Transmission

If your audio and video data contents are very important or sensitive, we recommend that you

use encrypted transmission function, to reduce the risk of audio and video data being stolen

during transmission.

Reminder: encrypted transmission will cause some loss in transmission efficiency.

Secure Auditing

o Check online users: we suggest that you check online users regularly to see if the device is
logged in without authorization.

o Check device log: By viewing the logs, you can know the IP addresses that were used to log
in to your devices and their key operations.

Network Log

Due to the limited storage capacity of the device, the stored log is limited. If you need to save

the log for a long time, it is recommended that you enable the network log function to ensure

that the critical logs are synchronized to the network log server for tracing.

Construct a Safe Network Environment

In order to better ensure the safety of device and reduce potential cyber risks, we recommend:

e Disable the port mapping function of the router to avoid direct access to the intranet
devices from external network.

o The network should be partitioned and isolated according to the actual network needs. If
there are no communication requirements between two sub networks, it is suggested to
use VLAN, network GAP and other technologies to partition the network, so as to achieve
the network isolation effect.

e Establish the 802.1x access authentication system to reduce the risk of unauthorized access
to private networks.

o Enable IP/MAC address filtering function to limit the range of hosts allowed to access the
device.

31

	Foreword
	Glossary
	1 Introduction
	1.1 Overview
	1.2 System Requirements
	1.3 Field Surveillance Unit
	1.4 Scenes

	2 Main Functions
	2.1 Initializing NetSDK
	2.1.1 Introduction
	2.1.2 Interface Overview
	2.1.3 Process Description
	2.1.4 Example Code

	2.2 Device Login and Logout
	2.2.1 Introduction
	2.2.2 Interface Overview
	2.2.3 Process Description
	2.2.4 Example Code

	2.3 Getting External Device List
	2.3.1 Introduction
	2.3.2 Interface Overview
	2.3.3 Process Description
	2.3.4 Example Code

	2.4 Getting Point Information
	2.4.1 Introduction
	2.4.2 Interface Overview
	2.4.3 Process Description
	2.4.4 Example Code

	2.5 Subscribing to Monitoring Point Alarm
	2.5.1 Introduction
	2.5.2 Interface Overview
	2.5.3 Process Description
	2.5.4 Example Code

	2.6 Subscribing to Real-time Information of Monitoring Point
	2.6.1 Introduction
	2.6.2 Interface Overview
	2.6.3 Process Description
	2.6.4 Example Code

	2.7 Subscribing to General Alarm
	2.7.1 Introduction
	2.7.2 Interface Overview
	2.7.3 Process Description
	2.7.4 Example Code

	3 Interface Function
	3.1 Initializing NetSDK
	3.1.1 Init
	3.1.2 Cleanup
	3.1.3 SetAutoReconnect
	3.1.4 SetNetworkParam

	3.2 Logging in and out
	3.2.1 LoginWithHighLevelSecurity
	3.2.2 Logout

	3.3 Getting External Device List QueryDevState
	3.4 Getting Point Information SCADAGetAttributeInfo
	3.5 Subscribing to Monitoring Point Alarm
	3.5.1 SCADAAlarmAttachInfo
	3.5.2 SCADAAlarmDetachInfo

	3.6 Subscribing to Real-time Information of Monitoring Point
	3.6.1 SCADAAttachInfo
	3.6.2 SCADADetachInfo

	3.7 Reporting Alarm
	3.7.1 CallbackSetDVRMessCallBack
	3.7.2 StartListen
	3.7.3 StopListen

	4 Callback
	4.1 fDisConnectCallBack
	4.2 fHaveReConnectCallBack
	4.3 fSCADAAlarmAttachInfoCallBack
	4.4 fSCADAAttachInfoCallBack
	4.5 fMessCallBackEx

	Appendix 1 Cybersecurity Recommendations

