NetSDK_C#

Programming Manual

V1.0.1

Foreword

Purpose

Welcome to use NetSDK programming manual (hereinafter referred to be "the manual”).

NetSDK, also known as network device SDK, is a development kit for developing the interfaces for
network communication among surveillance products such as Network Video Recorder (NVR),
Network Video Server (NVS), IP Camera (IPC), Speed Dome (SD), and intelligence devices.

The manual describes the NetSDK interfaces and processes of the general function modules for
Network Video Recorder (NVR), Enterprise Video Storage (EVS), and High Definition Composite Video
Interface (HDCVI). For more function modules and data structures, refer to NetSDK Development
Manual.

The example codes provided in the manual are only for demonstrating the procedure and not
assured to copy for use.

Reader

e NetSDK software development engineers
e Project managers
e Product managers

Signals
The following categorized signal words with defined meaning might appear in the manual.
Signal Words Meaning
C=" 1ps Provides methods to help you solve a problem or save you time.
m NOTE Provides additional information as the emphasis and supplement to the text.

Revision History

Version Revision Content Release Time
Updated the dependent library .

V1.0.1 ‘ , April 2021
information.

V1.0.0 First release. March 2020

Privacy Protection Notice

As the device user or data controller, you might collect personal data of others such as face,
fingerprints, car plate number, email address, phone number, GPS and so on. You need to be in
compliance with the local privacy protection laws and regulations to protect the legitimate rights

and interests of other people by implementing measures include but not limited to: providing clear
and visible identification to inform data subject the existence of surveillance area and providing
related contact.

About the Manual

e The manual is for reference only. If there is inconsistency between the manual and the actual
product, the actual product shall prevail.

e We are not liable for any loss caused by the operations that do not comply with the manual.

e The manual would be updated according to the latest laws and regulations of related
jurisdictions. For detailed information, refer to the paper manual, CD-ROM, QR code or our
official website. If there is inconsistency between paper manual and the electronic version, the
electronic version shall prevail.

e All the designs and software are subject to change without prior written notice. The product
updates might cause some differences between the actual product and the manual. Please
contact the customer service for the latest program and supplementary documentation.

e There still might be deviation in technical data, functions and operations description, or errors
in print. If there is any doubt or dispute, we reserve the right of final explanation.

e Upgrade the reader software or try other mainstream reader software if the manual (in PDF
format) cannot be opened.

e All trademarks, registered trademarks and the company names in the manual are the properties
of their respective owners.

e Please visit our website, contact the supplier or customer service if there is any problem
occurring when using the device.

e If thereis any uncertainty or controversy, we reserve the right of final explanation.

Glossary

This chapter provides the definitions to some of the terms that appear in the manual to help you

understand the function of each module.

Term Definition
NVR Abbreviation for Network Video Recorder.
EVS Abbreviation for Enterprise Video Storage.
HDCVI Abbreviation for High Definition Composite Video Interface.
Main Stream A type of video stream that usually has better resolution and clarity and
provides a better experience if the network resource is not restricted.
A type of video stream that usually has lower resolution and clarity than the
Sub Stream main stream but demands less network resources. The user can choose the
stream type according to the particular scenes.
Resolution is consisted of display resolution and image resolution. Display
Resolution resolution refers to the quantity of pixels in unit area, and the image
resolution refers to information quantity (the quantity of pixels per inch)
stored in the image.
A measurement, usually in FPS and Hz, which shows the frames of video. The
Frame Rate more the frame, more smooth the video. The frames over 24 FPS make the
image feels coherent.
An abstract concept of the communication and video stream transmission
between NetSDK and devices. For example, if a number of cameras (SD, IPC)
Video Channel are mounted on a storage device (NVR), the storage device manages the

cameras as video channels which are numbered from 0. If NetSDK connects
to the camera directly, the video channel is usually numbered as 0.

Alarm of Dynamic
Detection

When detecting a moving object on the image, an alarm by dynamic
detection will be uploaded.

Alarm of Hard Disk
Failure

When detecting a hard disk failure, an alarm will be uploaded.

Alarm of Video Loss

This alarm is only for analog channel. When the record disappeared from the
analog channel, an alarm will be uploaded. For the digital channel, refer to
IPC disconnection alarm.

Alarm of Hard Disk

Damage

When the hard disk is damaged, an alarm will be uploaded.

IPC Offline Alarm

When the IPC device is disconnected, an alarm will be uploaded.

External Alarm

NVR local alarm. When the NVR alarm terminal connects with alarm device, an

alarm will be uploaded.

IPC External Alarm

When the alarm on IPC device connects with alarm device, an external alarm
will be uploaded.

Table of Contents

Foreword I
Glossary 1l
1 Overview 1
1.1 General 1
1.2 Applicability 2
2 Function Modules 3
2.1 NetSDK Initialization 3
2.1.1 Introduction 3
2.1.2 Interface Overview 3
2.1.3 Process 3
2.1.4 Example Code 4

2.2 Device Login and Logout 5
2.2.1 Introduction 5
2.2.2 Interface Overview 5
2.2.3 Process 6
2.2.4 Example Code 7

2.3 Real-time Monitoring 7
2.3.1 Introduction 7
2.3.2 Interface Overview 8
2.3.3 Process 8
2.3.4 Example Code 12

2.4 Record Playback 13
2.4.1 Introduction 13
2.4.2 Interface Overview 14
2.4.3 Process 14
2.4.4 Example Code 16

2.5 Record Download 17
2.5.1 Introduction 17
2.5.2 Interface Overview 18
2.5.3 Process 18
2.5.4 Example Code 22

2.6 PTZ Control 27
2.6.1 Introduction 27
2.6.2 Interface Overview 27
2.6.3 Process 28
2.6.4 Example Code 30

2.7 Voice Talk 30
2.7.1 Introduction 30
2.7.2 Interface Overview 31
2.7.3 Process 31
2.7.4 Example Code 33

2.8 Video Snapshot 36
2.8.1 Introduction 36

2.8.2 Interface Overview 36
2.8.3 Process 37
2.8.4 Example Code 39

2.9 Subscribing Intelligent Event 40
2.9.1 Introduction 40
2.9.2 Interface Overview 40
2.9.3 Process 41
2.9.4 Example Code 42

2.10 Alarm Upload 43
2.10.1 Introduction 43
2.10.2 Interface Overview 43
2.10.3 Process 44
2.10.4 Example Code 45

2.11 Device Status and Information 46
2.11.1 Introduction 46
2.11.2 Interface Overview 46
2.11.3 Process 47
2.11.4 Example Code 51

3 Interface Definition 57
3.1 NetSDK Initialization 57
3.1.1 NetSDK Initialization 57
3.1.2 NetSDK Cleanup 57
3.1.3 Auto Reconnection Setting 57
3.1.4 Network Parameter Setting 58

3.2 Device Login 58
3.2.1 Login 58
3.2.2 Logout 59

3.3 Real-time Monitoring 59
3.3.1 Opening the Real-time Monitoring 59
3.3.2 Stopping the Real-time Monitoring 60
3.3.3 Saving the Real-time Monitoring Data 60
3.3.4 Stopping Saving the Real-time Monitoring Data 60
3.3.5 Setting Callback of Real-time Monitoring Data 61

3.4 Record Playback 62
3.4.1 Playback by Time 62
3.4.2 Setting the Work Mode 62
3.4.3 Stopping Playback 63
3.4.4 Getting the OSD Playback Time 63

3.5 Record Download 64
3.5.1 Querying Record Files within a Period 64
3.5.2 Opening the Record Query Handle 65
3.5.3 Finding the Record File 65
3.5.4 Closing the Record Query Handle 66
3.5.5 Downloading Record by File 66
3.5.6 Downloading Record by Time 67
3.5.7 Querying the record downloading progress 68
3.5.8 Stopping Record Downloading 68

VI

3.6 PTZ Control 69
3.6.1 PTZ Control 69

3.7 Voice Talk 72
3.7.1 Opening Voice Talk 72
3.7.2 Stopping Voice Talk 73
3.7.3 Starting Local Recording 73
3.7.4 Stopping Local Recording 73
3.7.5 Talk Data Sending 74
3.7.6 Audio Decoding 74

3.8 Video Snapshot 75
3.8.1 Capturing Picture to File 75
3.8.2 Capturing Picture 75

3.9 Intelligent Event 76
3.9.1 Subscribing Intelligent Event 76
3.9.2 Unsubscribing Smart 76

3.10 Alarm Upload 77
3.10.1 Setting Alarm Callback 77
3.10.2 Subscribing to Alarm 77
3.10.3 Stopping Alarm Subscription 77

3.11 Device Status and Information 78
3.11.1 Querying Device State 78
3.11.2 Querying Device Information 78
3.11.3 Subscribing to State of Remote Device 79
3.11.4 Stopping Subscribing State of Remote Device 79
3.11.5 Getting Information of Remote Device 79
3.11.6 Getting Channel Name 80

4 Callback Function 81
4.1 fDisConnectCallBack 81
4.2 fHaveReConnectCallBack 81
4.3 fRealDataCallBackEx 81
4.4 fAudioDataCallBack 82
4.5 fDownLoadPosCallBack 83
4.6 fDataCallBack 83
4.7 fTimeDownLoadPosCallBack 83
4.8 fMessCallBackEx 84
4.9 fCameraStateCallBack 85
4.10 fAnalyzerDataCallBack 86
Appendix 1 Cybersecurity Recommendations 87

1 Overview

1.1 General

T

he manual introduces NetSDK interfaces reference information that includes main function

modules, interface functions, and callback functions.

T

he following are the main functions:

NetSDK initialization, device login, real-time monitoring, record playback, record download, PTZ

control, voice talk, video snapshot, IVS, alarm upload, and storage.

For the files included in NetSDK library of C#, see Table 1-1.

Table 1-1 Files of NetSDK library

Library type Library file name Library file description

dhnetsdk.dll Library file

Function librar
Y avnetsdk.dll Library file

Configuration library dhconfigsdk.dll Library file

Playing auxiliary dhplay.dll Playing library

library (encoding and]) o
) fisheye.dll Fisheye correction library
decoding)

Auxiliary library of IvsDrawer.dll lamge displaying libaray

"dhnetsdk" StreamConvertor.dll Transcoding library

For the files included in the C# encapsulation project, see Table 1-2.

Table 1-2 Files of NetSDKCS project

File name File description

NetSDK.cs Encapsulate the C # interfaces which can be called by users

NetSDKStruct.cs Store the structure enumerations

OriginalSDK.cs Import the C interfaces in NetSDK library to C# project

—

The function library and configuration library are necessary libraries.

The function library is the main body of NetSDK, which is used for communication interaction
between client and products. It remotely controls device, queries device data, configures device
data information, as well as gets and handles the streams.

NetSDK library is the foundation of NetSDKCS project, and the file "OriginalSDK.cs" defines the
reference path of NetSDK library. Put the NetSDK library to the corresponding path when using
it. Support to customize the reference path.

Support to directly reference the encapsulation project in your own project, use the files of
encapsulation project in your own project, or encapsulate by yourself referring to this
encapsulation project.

This manual mainly introduces the C# project which is used to encapsulate the interfaces of the
C library. For more details, see the manuals of C NetSDK library.

1.2 Applicability

e Recommended memory: No less than 512 M
e System supported by NetSDK:
Windows 10/Windows 8.1/Windows 7/vista and Windows Server 2008/2003

2 Function Modules

2.1 NetSDK Initialization

2.1.1 Introduction

Initialization is the first step of NetSDK to conduct all the function modules. NetSDK does not have
the surveillance function but can set some parameters that affect the NetSDK overall functions.

e |Initialization occupies some memory.

e Only the first initialization is valid within one process.

e After using this function, call cleanup interface to release NetSDK resource.

2.1.2 Interface Overview

Table 2-1 Interfaces of NetSDK initialization

Interface Implication

NETClient.Init NetSDK initialization
NETClient.SetAutoReconnect Setting of reconnection after disconnection
NETClient.SetNetworkParam Setting of network environment
NETClient.Cleanup NetSDK cleaning up

2.1.3 Process

Figure 2-1 Initialization process

=

\4
Initialize SDK |
NETClient.Init -
T T T T i_ ——————]
[Set reconnection callback |
| NETClient.SetAutoReconnect |
_______ ESEEEEEaa
|
T T T T r _——— -]
[Set network parameter |
| NETClient.SetNetworkParam |
A\ 4
_______ EAEESEEEaa
Release SDK resource e« — — —]
NETClient.Cleanup
v Mandatory

End = = | .
I I Optional

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 (Optional) Call NETClient.SetAutoReconnect to set reconnection callback, to allow the
auto reconnecting after disconnection.

Step 3 (Optional) Call NETClient.SetNetworkParam to set network login parameter that includes
connection timeout and connection attempts.

Step 4 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Notes for Process

e (all NETClient.Init and NETClient.Cleanup in pairs. It supports multiple calling but it is
suggested to call the pair for only one time overall.

e |Initialization: Calling NETClient.Init multiple times is only for internal count without repeating
applying resources.

e C(Cleaning up: The interface NETClient.Cleanup clears all the opened processes, such as login,
real-time monitoring, and alarm subscription.

e Reconnection: NetSDK can set the reconnection function for the situations such as network
disconnection and power off. NetSDK will keep logging until succeeded. Only the real-time
monitoring, playback, smart event subscription and alarm subscription modules will be
resumed after the connection is back.

2.1.4 Example Code

// Delegate a static callback (ordinary delegates may be released before callback)
private static fDisConnectCallBack m_DisConnectCallBack; //Disconnect the callback

private static fHaveReConnectCallBack m_ReConnectCallBack; //Disconnect the callback

//Achieve to delegate
m_DisConnectCallBack = new fDisConnectCallBack(DisConnectCallBack);

m_ReConnectCallBack = new fHaveReConnectCallBack(ReConnectCallBack);

// Initialize NetSDK and disconnect callback during initialization
bool result = NETClient.Init(m_DisConnectCallBack, IntPtr.Zero, null);
if (Iresult)
{
MessageBox.Show(NETClient.GetLastError());// Display wrong message

return;

//Set auto reconnecting after disconnection

NETClient.SetAutoReconnect(m_ReConnectCallBack, IntPtr.Zero);

//Set network parameters

NET_PARAM param = new NET_PARAM()

{

nWaittime = 10000,// Timeout of waiting (ms)
nConnectTime = 5000,// Timeout of connection (ms)
L

NETClient.SetNetworkParam(param);

// Clean up the NetSDK resource
NETClient.Cleanup();

2.2 Device Login and Logout

2.2.1 Introduction

Device login, also called user authentication, is the precondition of all the other function modules.

You can obtain a unique login ID upon logging in to the device and should call login ID before using
other NetSDK interfaces. The login ID becomes invalid once logged out.

2.2.2 Interface Overview

Table 2-2 Interfaces of login and logout

Interface Implication
NETClient.LoginWithHighLevelSecurity Login
NETClient.Logout Logout

2.2.3 Process

Figure 2-2 Log process

)

\ 4
Initialize SDK
NETClient.Init

A 4

Log in to the Device
NETClient.LoginWithHighLevelSecurity

A 4

Particular function module

Y
Log out of the device
NETClient.Logout

\ 4
Release SDK resource
NETClient.Cleanup

e

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step 3 After successful login, you can realize the required function module.

Step 4 After using the function module, call NETClient.Logout to log out of the device.
Step 5 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Notes for Process

e Login handle: When the login is successful, the returned value is not 0 (even the handle is
smaller than 0, the login is also successful). One device can login multiple times with different
handle at each login. If there is not special function module, it is suggested to login only one
time. The login handle can be repeatedly used on other function modules.

e Duplicate handles: It is normal that the login handle is the same as the existed handle. For
example, log in to device A and get handle loginIDA. However, if you log out of loginIDA and

then log in, you may get LoginIDA again. But the duplicate handles do not occur throughout the
lifetime of the handle.

e Logout: The interface will release the opened functions internally, but it is not suggested to rely
on the cleaning up function of lougout. For example, if you opened the monitoring function,
you should call the interface that stops the monitoring function when it is no longer required.

e Use login and logout in pairs: The login consumes some memory and socket information and
release sources once logout.

e Login failure: It is suggested to check the failure through NETClient.GetLastError.

e After reconnection, the original login ID will be invalid. After the device is reconnected, the login
ID will take effect again.

2.2.4 Example Code

// Login the device
NET_DEVICEINFO_Ex m_Devicelnfo = new NET_DEVICEINFO_EXx();

IntPtr m_LoginID = NETClient.LoginWithHighLevelSecurity (ip, port, name, password,
EM_LOGIN_SPAC_CAP_TYPE.TCP, IntPtr.Zero, ref m_Devicelnfo);

if (IntPtr.Zero == m_LoginID)

{
MessageBox.Show(this, NETClient.GetLastError());
return;

}

// Log out of the device

if (IntPtr.Zero = m_LoginID)

{
bool result = NETClient.Logout(m_LoginID);
if (Iresult)
{
MessageBox.Show(this, NETClient.GetLastError());
return;
}
m_LoginID = IntPtr.Zero;
}

2.3 Real-time Monitoring

2.3.1 Introduction

Real-time monitoring obtains the real-time stream from the storage device or front-end device,
which is an important part of the surveillance system.

NetSDK can get the main stream and sub stream from the device once it logged.

e Supports calling the window handle for NetSDK to directly decode and play the stream
(Windows system only).

e Supports calling the real-time stream to you for independent treatment.

e Supports saving the real-time record to the specific file though saving the callback stream or
calling the NetSDK interface.

2.3.2 Interface Overview

Table 2-3 Interfaces of real-time monitoring

Interface Implication
NETClient.RealPlay Start real-time monitoring extension interface.
NETClient.StopRealPlay Stop real-time monitoring extension interface.

. Start saving the real-time monitoring data to the local
NETClient.SaveRealData th
path.

. Stop saving the real-time monitoring data to the local
NETClient.StopSaveRealData th
path.

. Set real-time monitoring data callback function extension
NETClient.SetRealDataCallBack

interface.

2.3.3 Process

You can realize the real-time monitoring through NetSDK decoding library or your play library.

2.3.3.1 NetSDK Decoding Library

Call PlaySDK library from the NetSDK auxiliary library to realize real-time play.

Figure 2-3 Process of playing by NetSDK decoding library

e
v

Initialize SDK
NETClient.Init

v

Login the device
NETClient.LoginWithHighLevelSecurity

v

Start monitoring, hwnd calls the valid

hande = @ -————— A q
NETClient.RealPlay Save the monitoring to the’ |
local path § v

NETClient.SaveRealData | Set callback

. NETClient.SetRealDataCallBack
Stop save the monitoring data i ‘

to the local path |
NETClient.StopSaveRealData |

v
Stop real-time monitoring
NETClient.StopRealPlay
v
Logout the device
NETClient.Logout

v

Release SDK resource
NETClient.Cleanup

v

GEE

|:| Mandotory Optional

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step 3 Call NETClient.RealPlay to start the real-time monitoring. The parameter hWnd is a valid
window handle.

Step4 (Optional) Call NETClient.SaveRealData to start saving the monitoring data.

Step 5 (Optional) Call NETClient.StopSaveRealData to end the saving process and generate the
local video file.

Step 6 (Optional) If you call NETClient.SetRealDataCallBack, you can choose to save or transmit

the video stream. The saved video stream is same as the stream saved through step 4 and
step 5.

Step 7 After using the real-time function, call NETClient.StopRealPlay to stop real-time
monitoring.

Step 8 After using the function module, call NETClient.Logout to log out of the device.

Step 9 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Notes for Process

e NetSDK decoding play only supports Windows system. You need to call the decoding after
getting the stream in other systems.

e In step 6, make sure that the parameter hWnd of NETClient.RealPlay introduces the valid
window handle, when you want to perform the corresponding operations in the callback
function of NETClient.SetRealDataCallBack,

e Timeout: The request on applying for monitoring resources should have made some agreement
with the device before requiring the monitoring data. There are some timeout settings (see
"NET_PARAM structure"), and the field about monitoring is nGetConnInfoTime. If there is
timeout due to the reasons such as bad network connection, you can modify the value of
nGetConninfoTime bigger.

The example code is as follows. Call it for only one time after having called NETClient.Init.

NET_PARAM param = new NET_PARAM()
{

nGetConnlinfoTime = 5000,//Timeout of getting connection information (ms)
h
NETClient.SetNetworkParam(param);
e Failed to repeat opening: For some models, the same channel cannot be opened for multiple
times during a login. If you are trying to open it repeatedly, you will success in the first try but
get failed afterwards. In this case, you can try the following:
¢ Close the opened channel. For example, if you already opened the main stream video on
the channel 1 and still want to open the sub stream video on the same channel, you can
close the main stream first and then open the sub stream.

¢ Login twice to obtain two login handles to deal with the main stream and sub stream
respectively.

e (alling succeeded but no image: NetSDK decoding needs to use dhplay.dll. It is suggested to
check if dhplay.dil and its auxiliary library are missing under the running directory. See Table 1-1
and Table 1-2.

2.3.3.2 Call Third Party Play Library

NetSDK calls back the real-time monitoring stream to you and you call PlaySDK to decode and play.

10

Figure 2-4 Process of calling the third party play library

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.
Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.
Step 3 After successful login, call NETClient.RealPlay to start the real-time monitoring. The

parameter hWnd is NULL.

Call NETClient.SetRealDataCallBack to set the real-time data callback.

In the callback, pass the data to PlaySDK to finish decoding.

After using the real-time function, call NETClient.StopRealPlay to stop real-time
monitoring.

Step 7 After using the function module, call NETClient.Logout to log out of the device.

Step 8 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Ste

wn |\
~ |
[3 (S, NN

.

Notes for Process

e Stream format: It is recommended to use PlaySDK for decoding.
e Lagimage

11

¢ When using PlaySDK for decoding, there is a default channel buffer size (the
PLAY_OpenStream interface in playsdk) for decoding. If the stream resolution value is big, it
is recommended to modify the parameter value smaller such as 3 M.

¢ NetSDK callbacks can only moves into the next process after returning from you. It is not
recommended for you to consume time for the unnecessary operations; otherwise the
performance could be affected.

2.3.4 Example Code

2.3.4.1 NetSDK Decoding Play

// Take opening the main stream monitoring of channel 1 as an example. The parameter hWnd is a window
handle.

IntPtr m_RealPlaylD = NETClient.RealPlay(m_LoginID, 0, hWnd, EM_RealPlayType.Realplay);
if (IntPtr.Zero == m_RealPlayID)
{

MessageBox.Show(this, NETClient.GetLastError());

return;

// Stop monitoring

bool ret = NETClient.StopRealPlay(m_RealPlayID);

if (Iret)

{
MessageBox.Show(this, NETClient.GetLastError());
return;

}

m_RealPlayID = IntPtr.Zero;

2.3.4.2 Call Play Library

// Take opening the main stream monitoring of channel 1 as an example.
IntPtr m_RealPlaylD = NETClient.RealPlay(m_LoginID, 0, null, EM_RealPlayType.Realplay);
if (IntPtr.Zero == m_RealPlayID)
{
MessageBox.Show(this, NETClient.GetLastError());
return;
}
//Set call function of real-time monitoring

private static fRealDataCallBackEx2 m_RealDataCallBackEx2;

12

m_RealDataCallBackEx2 = new fRealDataCallBackEx2(RealDataCallBackEx);

NETClient.SetRealDataCallBack(m_RealPlaylD, m_RealDataCallBackEx2, IntPtr.Zero,
EM_REALDATA_FLAG.DATA_WITH_FRAME_INFO | EM_REALDATA_FLAG.PCM_AUDIO_DATA |
EM_REALDATA_FLAG.RAW_DATA | EM_REALDATA_FLAG.YUV_DATA);

private void RealDataCallBackEx(IntPtr IRealHandle, uint dwDataType, IntPtr pBuffer, uint dwBufSize, IntPtr
param, IntPtr dwUser)

{

//Call PlaySDK interface to get the stream data from the device. See NetSDK monitoring demo source data
for more details.

//Do some operations such as save data, send data, or change data to YUV.
EM_REALDATA_FLAG type = (EM_REALDATA_FLAG)dwDataType;
switch (type)
{
case EM_REALDATA_FLAG.RAW_DATA:
//Process operation

break;

// Stop monitoring

bool ret = NETClient.StopRealPlay(m_RealPlayID);

if (ret)

{
MessageBox.Show(this, NETClient.GetLastError());
return;

}

m_RealPlayID = IntPtr.Zero;

2.4 Record Playback

2.4.1 Introduction

Record playback function plays the videos of a particular period in some channels to find the target
videos for check.

The playback includes the following functions: Start playback, pause Playback, resume playback, and
stop playback.

13

2.4.2 Interface Overview

Table 2-4 Interfaces of record playback

Interface Implication

Set the work mode such as voice talk, playback and

NETClient.SetDeviceMode)
authority.

NETClient.PlayBackByTime Playback by time.

Stop, fast forward, slow forward, pause, or resume record

NETClient.PlayBackControl
playback.

NETClient.GetPlayBackOsdTime Get the playback OSD time.

2.4.3 Process

After NetSDK initialization, you need to enter channel number, start time, stop time, and valid
window handle to realize the playback of the required record.

14

Figure 2-5 Process of record playback

Optional

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

15

te Call NETClient.LoginWithHighLevelSecurity to log in to the device.

:

te

:

as EM_USEDEV_MODE.RECORD_STREAM_TYPE, and parameter pValue
EM_STREAM_TYPE.MAIN.

wn

—+
F

IS

handle value.

[¥4]

—
F

(O}

parameter is PlayBackType.Pause.

(5]

—
F

[e)}

parameter is PlayBackType.Play.

[¥4]

—
F

~N

parameter is PlayBackType.Stop.
After using the function module, call NETClient.Logout to log out of the device.

wn

o~
F

[oe]

After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

(5]

~
F

\O

2.4.4 Example Code

// Set the stream type of playback. Here is set as the main stream.

EM_STREAM_TYPE streamType = EM_STREAM_TYPE.MAIN;

IntPtr pStream = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(int)));
Marshal.StructureToPtr((int)streamType, pStream, true);

NETClient.SetDeviceMode(m_LoginID, EM_USEDEV_MODE.RECORD_STREAM_TYPE, pStream);

//Start record playback

NET_IN_PLAY_BACK_BY_TIME_INFO stulnfo = new NET_IN_PLAY_BACK_BY_TIME_INFO();
NET_OUT_PLAY_BACK_BY_TIME_INFO stuOut = new NET_OUT_PLAY_BACK_BY_TIME_INFO();
stulnfo.stStartTime = NET_TIME.FromDateTime(startTime);

stulnfo.stStopTime = NET_TIME.FromDateTime(endTime);

stulnfo.hWnd = playback_pictureBox.Handle;

stulnfo.coDownLoadPos = null;

stulnfo.dwPosUser = IntPtr.Zero;

stulnfo.fDownLoadDataCallBack = null;

stulnfo.dwDataUser = IntPtr.Zero;

stulnfo.nPlayDirection = 0;

stulnfo.nWaittime = m_WaitTime;

m_PlayBackID = NETClient.PlayBackByTime(m_LoginID, nChannellD, stulnfo, ref stuOut);
if (IntPtr.Zero == m_PlayBackID)

{
MessageBox.Show(this, NETClient.GetLastError());

return;

16

(Optional) Call NETClient.SetDeviceMode twice and set the stream type parameter emType

Call NETClient.PlayBackByTime to start playback. The parameter hWnd is a valid window

(Optional) Call NETClient.PlayBackControl. The playback will pause when the second

(Optional) Call NETClient.PlayBackControl. The playback will resume when the second

After playback, call NETClient.PlayBackControl. The playback will stop when the second

// Pause playback
bool ret = NETClient.PlayBackControl(m_PlayBackID, PlayBackType. Pause);

if (ret)
{
MessageBox.Show(NETClient.GetLastError());
return;
}
// Resume playback
bool ret = NETClient.PlayBackControl(m_PlayBackiD, PlayBackType.Play);
if (ret)
{
MessageBox.Show(NETClient.GetLastError());
return;
}
// Stop playback
if (IntPtr.Zero != m_PlayBackID)
{
NETClient.PlayBackControl(m_PlayBacklID, PlayBackType.Stop);
m_PlayBackID = IntPtr.Zero;
}

2.5 Record Download

2.5.1 Introduction

Video surveillance system widely applies to safe city, airport, metro, bank and factory. When and
event occurs, you need to download the video records and report to the leaders, public security
bureau, or mass media. Therefore, record download is an important function.

The record download function helps you obtain the records saved on the device through NetSDK
and save into the local. It allows you to download from the selected channels and export to the local
disk or external USB flash drive. The downloaded records are in the private format of Dahua. They can
only be played with Dahua player or integrated Dahua playsdk.

17

2.5.2 Interface Overview

Table 2-5 Interfaces of record download

Interface Implication

. . Set the work modes such as voice talk, playback, and
NETClient.SetDeviceMode

authority.

NETClient.QueryRecordFile Query all the record files within a period.
NETClient.FindFile Open the record query handle.
NETClient.FindNextFile Find the record file.
NETClient.FindClose Close the record query handle.
NETClient.DownloadByRecordFile Download the record by file.
NETClient.DownloadByTime Download the record by time.
NETClient.GetDownloadPos Get the record download progress.
NETClient.StopDownload Stop the record download.

2.5.3 Process

The record download is consisted of download by file and download by time.

2.5.3.1 Downloading by File

You need to import the record file information to be downloaded. NetSDK can download the
specified record file and save to the required place.

You can also provide a callback pointer to NetSDK that calls back the specified record file to you for
treatment.

18

Figure 2-6 Process of download by file

Query for all records within Query for the records within
a period at once. a period one by one

—
= =

Optional

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.
Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

19

Step 3 Call NETClient.SetDeviceMode twice and set the stream type parameter emType as
EM_USEDEV_MODE.RECORD_STREAM_TYPE, and parameter pValue as
EM_STREAM_TYPE.MAIN.

Step 4 Query the record files by one of the following two ways:

e (Call NETClient.FindFile to obtain the record query handle, and then call
NETClient.FindNextFile several times to obtain the record file information and then
call NETClient.FindClose to close the record query handle at last.

e (Call NETClient.QueryRecordFile to obtain all the record files information for a period
one time.

Step 5 After getting the record file information, call NETClient.DownloadByRecordFile to start
downloading record files. You can decide whether to use cbDownlLoadPos to query the
record downloading progress in real time, if not, set it as NULL.

Step 6 (Optional) During downloading, call NETClient.GetDownloadPos to query the record
downloading progress or use coDownlLoadPos mentioned in step 5 to obtain the real-time
download progress.

Step 7 Call NETClient.StopDownload to stop download.

Step 8 After using the function module, call NETClient.Logout to log out of the device.

Step 9 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

2.5.3.2 Downloading by Time

You can import the start time and end time of download. NetSDK can download the specified record
file and save to the required place.

You can also provide a callback pointer to NetSDK which calls back the specified record file to you for
treatment.

20

Figure 2-7 Process of download by time

Optional

Process Description

Step 1
Step 2
Step 3

Step 4

Call NETClient_Init to initialize NetSDK.

Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.SetDeviceMode to set the parameter emType as
DH_RECORD_STREAM_TYPE, and pValue as EM_STREAM_TYPE.MAIN.

Call NETClient.DownloadByTime to start downloading by time. Either sSavedFileName or
cbTimeDownLoadPos is valid. You can decide whether to use coDownLoadPos to query the
record downloading progress in real time, if not, set it as NULL.

21

Step5 (Optional) During downloading, call NETClient.GetDownloadPos to query the record
downloading progress or use coDownLoadPos mentioned in step 4 to obtain the real-time
download progress.

Step 6 Call NETClient_StopDownload to stop download. You can close the download process
after it is completed or it is just partially completed.

Step 7 After using the function module, call NETClient_Logout to log out of the device.

After using all NetSDK functions, call NETClient_Cleanup to release NetSDK resource.

(5]

~
F

o]

2.5.4 Example Code

2.5.4.1 Downloading by File

// Set the stream type of playback. Here is to set as the main stream.

EM_STREAM_TYPE streamType = EM_STREAM_TYPE.MAIN;

IntPtr pStream = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(int)));
Marshal.StructureToPtr((int)streamType, pStream, true);

NETClient.SetDeviceMode(m_LoginID, EM_USEDEV_MODE.RECORD_STREAM_TYPE, pStream);

// There are two ways of record query: 1. Get all the record files of a certain period one time; 2. Get all the
record files of a certain period by several times.

// Way 1: Get all the record files of a certain period one time

int nChannellD = 0; // Channel ID

int fileCount = 0;

NET_RECORDFILE_INFO[] recordFileArray = new NET_RECORDFILE_INFO[5000];

bool ret = NETClient.QueryRecordFile(m_LoginID, nChannelld, EM_QUERY_RECORD_TYPE.ALL, startTime,
endTime, null, ref recordFileArray, ref fileCount, m_WaitTime, false);

if (false == ret)
{
MessageBox.Show(this, NETClient.GetLastError());

return;

// Way 2: Get all the record files of a certain period by several times
NET_IN_MEDIA_QUERY_FILE stuCondition = new NET_IN_MEDIA_QUERY_FILE();
stuCondition = (NET_IN_MEDIA_QUERY_FILE)obj;

stuCondition.dwSize = (uint)Marshal.SizeOf(stuCondition);
stuCondition.stuCardInfo.dwSize = (uint)Marshal.SizeOf(stuCondition.stuCardInfo);
stuCondition.nChannellD = 0;// -1 means all channels;

stuCondition.nMediaType = 0;// File type,0:Query any type,1:Query jpg picture
stuCondition.emFalgLists[0] = EM_RECORD_SNAP_FLAG_TYPE.TIMING;

stuCondition.nFalgCount = 1;

22

stuCondition.stuStartTime = NET_TIME.FromDateTime (DateTime.Now.AddDays(-0.99));//

stuCondition.stuEndTime = NET_TIME.FromDateTime(DateTime.Now);

// Step 1: Get record query handle

IntPtr fileHandle = IntPtr.Zero;

IntPtr pQueryCondition = IntPtr.Zero;

try

{
pQueryCondition = Marshal.AllocHGlobal(Marshal.SizeOf(stuCondition));
Marshal.StructureToPtr(stuCondition, pQueryCondition, true);

fileHandle = NETClient.FindFile(m_LoginHandle, EM_FILE_QUERY_TYPE.FILE, (object)stuCondition,
stuCondition.GetType(), 5000);

if (fileHandle == IntPtr.Zero)

{
Console.WriteLine(NETClient.GetLastError());
}
return fileHandle;
}
finally
{
Marshal.FreeHGlobal(pQueryCondition);
}

// Step 2: Get single record file information

int nFilecount = 3;// max file count in one query

int nRetCount = 0;// return count in one query

NET_OUT_MEDIA_QUERY_FILE[] MediaFileInfos = new NET_OUT_MEDIA_QUERY_FILE[nFilecount];

List<object> infoList = new List<object>();

for (inti = 0;i < nFilecount; i++)

{
MediaFilelnfos[il.dwSize = (uint)Marshal.SizeOf(MediaFilelnfosli]);
infoList.Add(MediaFilelnfosli]);

nRetCount = NETClient.FindNextFile(findHandle, nFilecount, infoList, MediaFilelnfos[0].GetType(), 3000);
if (nRetCount < 0)

{
Console WriteLine("find failed,last error:" + NETClient.GetLastError());

return;

}
else if (nRetCount == 0)

23

Console WriteLine("find file 0");

return;

// Step 3: Close record query handle
if(IntPtr.Zero != findHandle)

{
bool ret = NETClient.FindClose(findHandle);
if (Iret)
{
MessageBox.Show(NETClient.GetLastError());
}
findHandle = IntPtr.Zero;
}

// Callback declaration
// Playback/download progress callback
// It is not recommended to call NetSDK interface in this callback

// dwDownLoadSize: "-1" that represents current playback/download has completed. "-2" represents
writing file failed. Other values represent valid data.

// Set this callback through NETClient.DownloadByRecordFile. When NetSDK receives playback/download
data, it will call this function.

private static fDownLoadPosCallBack m_DownLoadPosHandle;

m_DownLoadPosHandle = new fDownLoadPosCallBack(DownlLoadPosCallBack);

// Record download
// Start record download
// Either sSavedFileName or cbTimeDownLoadPos is valid.
// In the application, save to sSavedFileName or callback to handle the data.
// stuFile is the file information queried before
NET_RECORDFILE_INFO stuRecordFile = new NET_RECORDFILE_INFO();
stuRecordFile.ch = (uint)stuFile.nChannellD;
stuRecordFile.bHint = stuFile.byPartition;
stuRecordFile.nRecordFileType = 255;
stuRecordFile.starttime = stuFile.stuStartTime;
stuRecordFile.endtime = stuFile.stuEndTime;
stuRecordFile.driveno = stuFile.nDriveNo;

stuRecordFile.size = stuFile.nFileSize/1024;

24

stuRecordFile.filename = stuFile.szFilePath;
stuRecordFile.startcluster = stuFile.nCluster;

IntPtr m_DownLoadHandle = NETClient.DownloadByRecordFile(m_LoginHandle, ref stuRecordFile,
storeFile, m_DownLoadPosHandle, IntPtr.Zero);

if (m_DownlLoadHandle == IntPtr.Zero)

{
MessageBox.Show(NETClient.GetLastError());

// Close download which can be called after download or in process.

if (IntPtr.Zero '= m_DownlLoadHandle)

{
bool ret = NETClient.StopDownload(m_DownLoadHandle);
if (Iret)
{
MessageBox.Show(NETClient.GetLastError());
}
m_DownLoadHandle = IntPtr.Zero;
}

// Callback definition
private void DownLoadPosCallBack(IntPtr IPlayHandle, uint dwTotalSize, uint dwDownLoadSize, IntPtr dwUser)

{
if ((int)dwDownLoadSize ==-1)

{
Console.WriteLine("download over");
}
else if ((int)JdwDownLoadSize == -2)
{
Console WriteLine("write file error");
}
else
{
value = (int)(dwDownLoadSize * 100 / dwTotalSize);
Console.WriteLine(“Download" + value);
}

25

2.5.4.2 Downloading by Time

// Callback declaration
// Playback/download progress callback
// It is not recommended to call NetSDK interface in this callback

// dwDownLoadSize: "-1" represents current playback/download has completed. "-2" represents writing
file failed. Other values represent valid data.

// Set this callback through NETClient. DownloadByTime. When NetSDK receives playback/download data,
it will call this function.

private static fTimeDownLoadPosCallBack m_DownloadPosCallBack;

m_DownloadPosCallBack = new fTimeDownLoadPosCallBack(DownLoadPosCallBack);

// Set the stream type of playback. Here is to set as the main stream.

EM_STREAM_TYPE streamType = EM_STREAM_TYPE.MAIN;

IntPtr pStream = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(int)));
Marshal.StructureToPtr((int)streamType, pStream, true);

NETClient.SetDeviceMode(m_LoginID, EM_USEDEV_MODE.RECORD_STREAM_TYPE, pStream);

// Download record file

m_DownloadID = NETClient.DownloadByTime(m_LoginID, nChannelld, EM_QUERY_RECORD_TYPE.ALL,
startTime, endTime, sSavedFileName, m_DownloadPosCallBack, IntPtr.Zero, null, IntPtr.Zero, IntPtr.Zero);

if (IntPtr.Zero == m_DownloadID)
{
MessageBox.Show(this, NETClient.GetLastError());

return;

// Close download which can be called after download or in process.

if (IntPtr.Zero '= m_DownLoadHandle)

{
bool ret = NETClient.StopDownload(m_DownLoadHandle);
if (Iret)
{
MessageBox.Show(NETClient.GetLastError());
}
m_DownLoadHandle = IntPtr.Zero;
}

// Callback definition

26

private void DownLoadPosCallBack(IntPtr IPlayHandle, uint dwTotalSize, uint dwDownLoadSize, int index,
NET_RECORDFILE_INFO recordfileinfo, IntPtr dwUser)

{
if (IPlayHandle == m_DownloadID)
{
int value = 0;
if (-1 == (int)dwDownLoadSize)
{
value = DOWNLOAD_END;
}
else if (-2 == (int)]dwDownLoadSize)
{
value = DOWNLOAD_FAILED;
}
else
{
value = (int)(dwDownLoadSize * 100 / dwTotalSize);
Console.WriteLine(“Download" + value);
}
}

2.6 PTZ Control

2.6.1 Introduction

PTZ is a mechanical platform that carries the device and the protective enclosure and performs
remote control in all directions.

PTZ is consisted of two motors that can perform horizontal and vertical movement to provide the
all-around vision.

This section provides guidance to you about how to control directions (there are eight directions:
upper, lower, left, right, upper left, upper right, bottom left, and bottom right), focus, zoom, iris, fast
positioning, and 3-dimensional positioning through NetSDK.

2.6.2 Interface Overview

Table 2-6 Interface of PTZ control

Interface Implication

NETClient.PTZControl PTZ control extension interface

27

2.6.3 Process

Direction control, focus, zoom, and aperture are the continuous operations. NetSDK provides start
and stop interfaces to you for timing control.
Figure 2-8 Process of PTZ control (continuous)

Both fast positioning and 3-dimensional positioning belong to one-time action, which needs to call
the PTZ control interface just one time.

28

Figure 2-9 Process of PTZ control (one-time)

)

\ 4
Initialize SDK
NETClient.Init

Y

Log in to the device
NETClient.LoginWithHighLevelSecurity

Y

PTZ control operations
NETClient.PTZControl

Y

Log out of the device
NETClient.Logout

\4
Release SDK resource
NETClient.Cleanup

=

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step3 Call NETClient.PTZControl to operate the PTZ according to the situation. Different PTZ
command might need different parameters, and part of commands need to call the
corresponding stop command, such as moving left and moving right. For details, see "2.6.4
Example Code."

Step 4 After using the function module, call NETClient.Logout to log out of the device.

Step 5 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Notes for Process

e Fast positioning: For the SD, take the current monitoring image center as origin, and the valid
range of horizontal and vertical coordinates is [-8191, 8191]. For example, if the horizontal
coordinate is 2000 and the vertical is 2000, the SD moves toward upper right and gets a new
origin, which means the coordinate specified every time is only relative to the current location.

29

e 3-dimensional positioning: For the SD, there is an initial position first. The horizontal coordinate
is [0, 3600] and the vertical is [-1800, 1800]. The coordinate specified each time is the absolute
coordinate and is irrelevant to the location of the SD image last time.

e For more example code, see the NetSDK package on the website.

2.6.4 Example Code

int hSpeedValue = 4; // Rotating speed in horizontal direction.
int vSpeedValue = 4; // Rotating speed in vertical direction.
int IParam3 = 0;

// Continuous operation: take moving upward as an example.
// Start moving upward.

bool bRet = NETClient.PTZControl(m_LoginID, nChannelld, EM_EXTPTZ_ControlType.UP_CONTROL, 0,
vSpeedValue, 0, false, IntPtr.Zero);

// Stop moving forward.

bRet = NETClient.PTZControl(m_LoginID, nChannelld, EM_EXTPTZ_ControlType.UP_CONTROL, 0, vSpeedValue,
0, true, IntPtr.Zero);

// One-time operation movement: Take fast positioning as an example.

int IParam1 = 2000; // Horizontal coordinate, valid range[-8191,8191]

int IParam2 = 2000; //Vertical coordinate, valid range [-8191,8191]

int IParam3 = 1; // Zoom, valid range (-16 ~ 16),1 indicates rotating without zooming

bRet = NETClient.PTZControl((m_LoginID, nChannelld, EM_EXTPTZ_ControlType.FASTGOTO, IParam1, IParam2,
IParam3, false, IntPtr.Zero);

2.7 Voice Talk

2.7.1 Introduction

Voice talk realizes the voice interaction between the local platform and the environment where
front-end devices are located.

This section introduces how to use NetSDK to realize the voice talk with the front-end devices.

30

2.7.2 Interface Overview

Table 2-7 Interfaces of voice talk

Interface

Implication

NETClient.StartTalk

Start voice talk.

NETClient.StopTalk

Stop voice talk.

NETClient.RecordStart

Start NETClient record (valid only in Windows system).

NETClient.RecordStop

Stop NETClient record (valid only in Windows system).

NETClient.TalkSendData

Send voice data to the device.

NETClient.AudioDec

Decode audio data (valid only in Windows system).

2.7.3 Process

When NetSDK has collected the audio data from the local audio card, or NetSDK has received the
audio data from the front-end devices, NetSDK will call the callback of audio data.

You can call the NetSDK interface in the callback parameters to send the local audio data to the

front-end devices, or call NetSDK interface to decode and playback the audio data received from the

front-end devices.

This process is valid only in Windows system.

31

Figure 2-10 Process of voice talk

=

A
A

A 4

A 4

=

Process Description

Value of byAudioFlag

y
A
y

0: Audio data collected on PC 1: Audio returned by device

A 4

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step 3 Call NETClient.SetDeviceMode to set decoding information of voice talk. Set parameter
emType as EM_USEDEV_MODE.TALK_ENCODE_TYPE.

32

te

:

Call NETClient.SetDeviceMode to set mode of voice talk. Set parameter emType as
EM_USEDEV_MODE.TALK_SPEAK_PARAM.

Call NETClient.SetDeviceMode to set callback and start voice talk. In the callback, call
NETClient.AudioDec to decode the audio data sent from the decoding device, and call
NETClient.TalkSendData to send the audio data of the PC end to the device.

Call NETClient.RecordStart to start recording at PC. After this interface is called, the voice
talk callback in NETClient.StartTalk will receive the local audio data.

te

:

[Va)

—~+
F

[e)}

After using the voice talk function, call NETClient.RecordStop to stop recording.
Call NETClient.StopTalk to stop voice talk.
After using the function module, call NETClient.Logout to log out of the device.

wn N
~+ |+
FF
o0 N

S
Step 10 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

—~
F
\O

Notes from Process

Voice encoding format: The example uses the common PCM format. NetSDK supports accessing
the voice encoding format supported by the device. For more details of the example code, see
the NetSDK package on the website. If the default PCM can satisfy the requirement, it is not
recommended to obtain the voice encoding format from the device.

e No sound at the device: The audio data needs to be collected by the device such as microphone.
It is recommended to check if the microphone or other equivalent device is plugged in and if
the NETClient.RecordStart succeeded in returning.

2.7.4 Example Code

// Set the voice talk encoding data, and take PCM as an example.

IntPtr talkEncodePointer = IntPtr.Zero;

NET_DEV_TALKDECODE_INFO talkCodelnfo = new NET_DEV_TALKDECODE_INFO();
talkCodelnfo.encodeType = EM_TALK_CODING_TYPE.PCM;

talkCodelnfo.dwSampleRate = SampleRate;

talkCodelnfo.nAudioBit = AudioBit;

talkCodelnfo.nPacketPeriod = PacketPeriod;

talkCodelnfo.reserved = new byte[60];

talkEncodePointer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(NET_DEV_TALKDECODE_INFO)));
Marshal.StructureToPtr(talkCodelnfo, talkEncodePointer, true);
NETClient.SetDeviceMode(m_LoginID, EM_USEDEV_MODE.TALK_ENCODE_TYPE, talkEncodePointer);

// Set mode of voice talk

IntPtr talkSpeakPointer = IntPtr.Zero;

NET_SPEAK_PARAM speak = new NET_SPEAK_PARAM();
speak.dwsSize = (uint)Marshal.SizeOf(typeof(NET_SPEAK_PARAM));
speak.nMode = 0;

speak.bEnableWait = false;

speak.nSpeakerChannel = 0;

33

talkSpeakPointer = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(NET_SPEAK_PARAM)));
Marshal.StructureToPtr(speak, talkSpeakPointer, true);
NETClient.SetDeviceMode(m_LoginID, EM_USEDEV_MODE.TALK_SPEAK_PARAM, talkSpeakPointer);

// Set callback of voice talk
private static fAudioDataCallBack m_AudioDataCallBack;
m_AudioDataCallBack = new fAudioDataCallBack(AudioDataCallBack);

// Start voice talk
IntPtr m_TalkID = NETClient.StartTalk(m_LoginID, m_AudioDataCallBack, IntPtr.Zero);
if(IntPtr.Zero == m_TalkID)
{
MessageBox.Show(this, NETClient.GetLastError());

return;

// Achieve callback function

private void AudioDataCallBack(IntPtr ITalkHandle, IntPtr pDataBuf, uint dwBufSize, byte byAudioFlag, IntPtr
dwUser)

{
if (ITalkHandle == m_TalkID)
{
if (SendAudio == byAudioFlag)
{
//send talk data
NETClient.TalkSendData(ITalkHandle, pDataBuf, dwBufSize);
}
else if (ReviceAudio == byAudioFlag)
{
//Here call netsdk decode audio, or can send data to other user.
try
{
NETClient.AudioDec(pDataBuf, dwBufSize);
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}

34

// Start voice recording of PC
bool ret = NETClient.RecordStart(m_LoginID);
if(ret)
{
NETClient.StopTalk(m_TalkID);
m_TalkID = IntPtr.Zero;
MessageBox.Show(this, NETClient.GetLastError());

return;

// Stop voice recording of PC
NETClient.RecordStop(m_LoginID);

// Stop voice talk
NETClient.StopTalk(m_TalkID);
m_TalkID = IntPtr.Zero;

DHDEV_TALKDECODE_INFO curTalkMode;
curTalkMode.encodeType = DH_TALK_PCM;
curTalkMode.nAudioBit = 16;
curTalkMode.dwSampleRate = 8000;
curTalkMode.nPacketPeriod = 25;
NETClient.SetDeviceMode(lLoginHandle, DH_TALK_ENCODE_TYPE, &curTalkMode);
// Start voice talk
ITalkHandle = NETClient.StartTalk(ILoginHandle, AudioDataCallBack, (DWORD)NULL);
if(0 != ITalkHandle)
{
BOOL bSuccess = NETClient.RecordStart(ILoginHandle);

// Stop local recording
if (NETClient.RecordStop(ILoginHandle))
{
printf("CLIENT_RecordStop Failed!Last Error[%x]\n", CLIENT_GetLastError());

}
// Stop voice talk

35

if (0 !=ITalkHandle)
{

NETClient.StopTalk(ITalkHandle);
}

void CALLBACK AudioDataCallBack(LLONG ITalkHandle, char *pDataBuf, DIWORD dwBufSize, BYTE byAudioFlag,
DWORD dwUser)

{
if(0 == byAudioFlag)
{
// Send the sound data checked by the PC to the device
LONG ISendLen = NETClient.TalkSendData(ITalkHandle, pDataBuf, dwBufSize);
if(ISendLen != (LONG)dwBufSize)
{
printf("NETClient.TalkSendData Failed!Last Error[%x]\n" , CLIENT_GetLastError());
}
}
else if(1 == byAudioFlag)
{
// Send the voice data of the device to NetSDK encode and play.
NETClient.AudioDec(pDataBuf, dwBufSize);
}
}
2.8 Video Snapshot

2.8.1 Introduction

Video snapshot obtains the picture data of the current video. This section introduces the following
two snapshot ways:

e Network snapshot: Call the NetSDK interface to send the capturing command to the device that

captures the current image and send to NetSDK through network, and then NetSDK returns the
image data to you.

e Local snapshot: When the monitoring is opened, you can save the monitoring data to the
picture format that is the frame information that does not have an interaction with the device.

2.8.2 Interface Overview

Table 2-8 Interfaces of video snapshot

Interface Implication
NETClient.SnapPictureToFile Snapshot and directly returns the picture data to the user.
NETClient.CapturePicture Local snapshot with the parameters that could be monitoring

36

Interface Implication

handle or playback handle.

2.8.3 Process

Video snapshot is consisted of network snapshot and local snapshot.

2.8.3.1 Network Snapshot

Figure 2-11 Process of network snapshot

O)

\ 4
Initialize SDK
NETClient.Init

A\ 4
Log in to the device
NETClient.LoginWithHighLevelSecurity

A 4
Send snapshot command to device
NETClient.SnapPictureToFile

Y
Log out of the device
NETClient.Logout

A\ 4

Release SDK resource
NETClient.Cleanup

Y

SN

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device after initialization.
Step3 Call NETClient.SnapPictureToFile to obtain the picture data.

Step 4 After using the function module, call NETClient.Logout to log out of the device.
Step 5 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

Notes for Process

e Multi-thread calling: Multi-thread calling is not supported for the functions within the same
login session.

37

e Snapshot configuration: You can configure the items such as quality and definition for the
snapshot. However, it is not recommended to modify if the default configurations are
satisfactory.

e Picture save: The picture data is returned as memory and the interface supports saving the
picture data as file (the precondition is that you have set the szFilePath field of
NET_IN_SNAP_PIC_TO_FILE_PARAM).

2.8.3.2 Local Snapshot

Figure 2-12 Process of local snapshot

38

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step2 Call NETClient.LoginWithHighLevelSecurity to log in to the device after initialization.

Step 3 Call NETClient.RealPlay to open monitoring and obtain the monitoring handle.

Step 4 After the monitoring screen is displayed, call NETClient.CapturePicture to introduce the
monitoring handle.

Step 5 Call NETClient.StopRealPlay to close the real-time monitoring.

Step 6 After using the function module, call NETClient.Logout to log out of the device.

Step 7 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

2.8.4 Example Code

// Network snapshot example

NET_SNAP_PARAMS stu_snap_param = new NET_SNAP_PARAMS()

{
Channel =0,
Quality =2,
mode =0
L
NET_IN_SNAP_PIC_TO_FILE_PARAM inParam = new NET_IN_SNAP_PIC_TO_FILE_PARAM()
{
dwsSize = (uint)Marshal.SizeOf(typeof(NET_IN_SNAP_PIC_TO_FILE_PARAM)),
stuParam = stu_snap_param,
szFilePath = savepath + string.Format("\\{0}_{1}_image.jpg", nameprefix, i + 1)
L
NET_OUT_SNAP_PIC_TO_FILE_PARAM outParam = new NET_OUT_SNAP_PIC_TO_FILE_PARAM()
{
dwsSize = (uint)Marshal.SizeOf(typeof(NET_OUT_SNAP_PIC_TO_FILE_PARAM)),
dwPicBufLen = 1024000,
szPicBuf = Marshal.AllocHGlobal(1024000),
L

bool result = NETClient.SnapPictureToFile(m_LoginID, ref inParam, ref outParam, timeout);
if (Iresult)
{

MessageBox.Show("Snap picture failed");

// Example of local capturing, and m_RealPlayID is the handle for opening monitoring.
string filePath = path + "\\" + "client" + m_SnapSerialNum.ToString() + "jpg";
bool result = NETClient.CapturePicture(m_RealPlayID, filePath, EM_NET_CAPTURE_FORMATS.JPEG);

39

if (result)
{
MessageBox.Show(this, NETClient.GetLastError());

return;

2.9 Subscribing Intelligent Event

2.9.1 Introduction

Smart event upload is that smart devices analyze real-time streams. When finding the events which
have been set in advance, the events will be sent to users. Smart events correspond to
EM_EVENT_IVS_TYPE enumeration. For details, see the value of enumeration.

NetSDK connects to the device and subscribes to smart event function. When the device gets the
smart events, they will be sent to NetSDK.

2.9.2 Interface Overview

Table 2-9 Interfaces of smart event upload

Interface Implication
NETClient.RealLoadPicture Subscribe to alarm events.
NETClient.StopLoadPic Stop subscribing to smart events.

40

2.9.3 Process

Figure 2-13 Process of smart event upload

Begin

)

Y

Initialize SDK
NETClient.Init

Y

Log in to the device
NETClient.LoginWithHighLevelSecurity

\ 4

NETClient.Re

Subscribe alarm to device
alLoadPicture

\ 4

Stop subscribing alarm to device
NETClient.StopLoadPic

\ 4

Log out of the device

NETClient.Logout

Y

Release SDK resource

NETClient.Cleanup

C

Process Description

te

wn [\ [[N
—~+ |+ |+
D | |D
N oW N =

wn
—~
(0]

End

Call NETClient.Init to initialize NetSDK.

Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Call NETClient.RealLoadPicture to subscribe intelligent events from devices.
After subscribing, SDK gets the uploaded intelligent event by fAnalyzerDataCallBack and
inform users.

intelligent event.

wn |\
~+ |+
N O

Call NETClient.Logout to log out of the device.

A 4

Subscribe callback and get
alarm information
fAnalyzerDataCallBack

After uploading intelligent event, call NETClient.StopLoadPic to stop subscribing

After using all NetSDK functions, call NETClient.Cleanup to release resources.

Notes for Process

Event type: Subscribe to all smart events (EM_EVENT_IVS_TYPE.ALL) if different smart events

need to be uploaded. Also support to subscribe to a single smart event.

Image receiving or not: The network environment of some devices is 3G or 4G. When the

NetSDK is connected to the device, set bNeedPicFile parameter in the

NETClient.RealLoadPicture to false if images are bot needed. Then only receive information

about smart traffic event, without images.

Pass the channel number -1 for full channel subscription. Some intelligent transportation

products do not support full-channel subscription. If the -1 subscription fails, try a

single-channel subscription.

In the case of multi-device subscription, there are two main ways to distinguish which event is

reported by one device.

¢ Establish the mapping relationship between the device IP, login handle, and subscription
handle. Locate the login handle through the subscription handle returned by the callback
function, and then find the device IP;

¢ Use dwUser in the callback function. The dwUser passed in by the subscription function will
be returned in the callback function, thereby locating which device subscribes the event

that triggered the callback.

2.9.4 Example Code

// Delegate the intelligent event callback
private static fAnalyzerDataCallBack m_AnalyzeHandle;

m_AnalyzeHandle = new fAnalyzerDataCallBack(AnalyzerDataCallBack);

// Upload the subscribed smart traffic events

// The example subscribes to the event of crowd density detection with 0 channel. Here, m_LoginID is the
login handle. It will return event picture.

IntPtr realLoadPicturHandle = NETClient.RealLoadPicture(m_LoginID, 0,
(uint)EM_EVENT_IVS_TYPE.CROWDDETECTION, true, m_AnalyzeHandle, IntPtr.Zero, IntPtr.Zero);

if (IntPtr.Zero == realLoadPicturHandle)

{

MessageBox.Show(this, NETClient.GetLastError());
return;

}

// Cancel the subscription of smart traffic events

NETClient.StopLoadPic(realLoadPicturHandle);

// Upload callback of intelligent event

private int AnalyzerDataCallBack(IntPtr IAnalyzerHandle, uint dwAlarmType, IntPtr pAlarminfo, IntPtr pBuffer,
uint dwBufSize, IntPtr dwUser, int nSequence, IntPtr reserved)

42

{
switch ((EM_EVENT_IVS_TYPE)dwAlarmType)
{
// Event of crowd density detection
case EM_EVENT_IVS_TYPE.CROWDDETECTION:
{

NET_DEV_EVENT_CROWD_DETECTION_INFO info =
(NET_DEV_EVENT_CROWD_DETECTION_INFO)Marshal.PtrToStructure(pAlarminfo,
typeof(NET_DEV_EVENT_CROWD_DETECTION_INFO));

this.Beginlnvoke(new Action(() =>

{

Console.WriteLine("Event: Crowd density detection;");
Console.WriteLine("Channel number: " + info.nChannellD + ";");

Console.WriteLine("Time: " + info.UTC.ToString() + ";");

break;
default:
break;

}

return O;

2.10 Alarm Upload

2.10.1 Introduction

Alarm upload can be realized through NetSDK login the device and subscription of the alarm

function to the device which will send the detected alarm event to NetSDK. The alarm information

can be obtained through callback.

2.10.2 Interface Overview

Table 2-10 Interfaces of alarm upload

Interface Implication
NETClient.SetDVRMessCallBack Set the alarm callback.
NETClient.StartListen Subscribe to alarm.

43

Interface Implication

NETClient.StopListen Stop subscribing to alarm.

2.10.3 Process

Figure 2-14 Process of alarm upload

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.SetDVRMessCallBack to set alarm callback which should be called before
subscribing alarm.

Step 3 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

44

Step4 Call NETClient.StartListen to subscribe to alarm to the device. If succeeded, the alarm
event uploaded by the device will be informed to you through the callback set by
NETClient.SetDVRMessCallBack.

Step 5 After using the alarm upload function, call NETClient.StopListen to stop subscribing alarm
to the device.

Step 6 After using the function module, call NETClient.Logout to log out of the device.

Step 7 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

2.10.4 Example Code

// Delegate a static callback

private static fMessCallBackEx m_AlarmCallBack;
m_AlarmCallBack = new fMessCallBackEx(AlarmCallBackEx);
// Set alarm callback

NETClient.SetDVRMessCallBack(m_AlarmCallBack, IntPtr.Zero);

// Deal with alarm callback

private bool AlarmCallBackEx(int ICommand, IntPtr ILoginID, IntPtr pBuf, uint dwBufLen, IntPtr pchDVRIP, int
nDVRPort, bool bAlarmAckFlag, int nEventID, IntPtr dwUser)

{
EM_ALARM_TYPE type = (EM_ALARM_TYPE)ICommand;
switch (type)
{
case EM_ALARM_TYPE.ALARM_ALARM_EX:
data = new byte[dwBufLen];
Marshal.Copy(pBuf, data, 0, (int)dwBufLen);
for (inti=0;i < dwBufLen; i++)
{
if (data[i] == ALARM_START) // alarm start
{//Customize
}
else //alarm stop
{
}
}
break;
case EM_ALARM_TYPE.ALARM_RECORD_SCHEDULE_CHANGE:
{

NET_ALARM_RECORD_SCHEDULE_CHANGE_INFOQ info =
(NET_ALARM_RECORD_SCHEDULE_CHANGE_INFO)Marshal.PtrToStructure(pBuf,
typeof(NET_ALARM_RECORD_SCHEDULE_CHANGE_INFQ));

45

// Customize

break;
default:
Console.WriteLine(ICommand.ToString("X"));
break;
}

return true;

// Subscribe to alarm
bool ret = NETClient.StartListen(m_LoginID);
if (Iret)
{
MessageBox.Show(this, NETClient.GetLastError());

return;
}
// Stop alarm subscription
bool ret = NETClient.StopListen(m_LoginID);
if (ret)
{
MessageBox.Show(this, NETClient.GetLastError());

return;

2.11 Device Status and Information

2.11.1 Introduction

The storage interface mainly includes access to remote device information, query subscription on
connection state of remote device, and modification of remote channel name.

2.11.2 Interface Overview

Table 2-11 Interfaces of storage

Interface Implication

Directly get the connection state of remote device for each
NETClient.QueryDevState channel individually.

Set the parameter type as EM_DEVICE_STATE.VIRTUALCAMERA.
NETClient.QueryDevinfo Directly get the connection state of remote device for all the

46

Interface

Implication

channels at the same time.
Set the parameter nQueryType as
EM_QUERY_DEV_INFO.GET_CAMERA_STATE.

NETClient.AttachCameraState

Subscribe to the remote device state.
When the state changes, the corresponding information will be
reported.

NETClient.DetachCameraState

Stop subscribing the remote device state.
Used with NETClient.AttachCameraState in match.

NETClient.MatrixGetCameras

Get the information of remote device, such as device type and IP.

NETClient.GetNewDevConfig

Get the channel name.

Set the parameter strCommand as ChannelTitle.

2.11.3 Process

The storage module has the following processes:

e Direct access to connection state of remote device

Subscription to connection state of remote device

[}
e Access to the information of remote device
[}

Access to channel name of remote device

47

2.11.3.1 Direct Access to Connection State of Remote Device

Figure 2-15 Process of directly accessing to connection state of remote device

e)

\ 4
Initialize SDK
NETClient.Init

\ 4

Log in to the device
NETClient.LoginWithHighLevelSecurity

\ 4
Directly get the connection state of remote device
NETClient.QueryDevState/NETClient.QueryDevinfo

\ 4
Log out of the device
NETClient.Logout

Y

Release SDK resource
NETClient.Cleanup

Process Description

Step 1

Call NETClient.Init to initialize NetSDK.

Call NETClient.LoginWithHighLevelSecurity to log in to the device after initialization.
Directly access to connection state of remote device.

There are two interfaces that are NETClient.QueryDevState (nType is
EM_DEVICE_STATE.VIRTUALCAMERA) and NETClient.QueryDevinfo (emQueryType is
EM_QUERY_DEV_INFO.GET_CAMERA_STATE) respectively.

L[]

The two interfaces are different depending on the device. It is suggested to have a test prior
to use, and then select the proper interface.

After using the function module, call NETClient.Logout to log out of the device.

After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

48

2.11.3.2 Subscription to Connection State of Remote Device

For the process of subscription to connection state of remote device, see Figure 2-16.
Figure 2-16 Process of subscription to connection state of remote device

)

\ 4
Initialize SDK
NETClient.Init

\ 4
Log in to the device
NETClient.LoginWithHighLevelSecurity

\ 4
Subscribe remote device state
NETClient.AttachCameraState

Subscribe callback to call the
device with changes in state
fCameraStateCallBack

A\ 4

\ 4

Stop subscribe remote device
NETClient.DetachCameraState

Y
Log out of the device
NETClient.Logout

\ 4
Release SDK resource
NETClient.Cleanup

SN

Process Description

Call NETClient.Init to initialize NetSDK.
Call NETClient.LoginWithHighLevelSecurity to log in to the device.
Call NETClient.AttachCameraState to subscribe to the connection state of remote device. If

te

v |\ [N
~ |+
w N =

the state changes, the report will be sent through fCameraStateCallBack.

Call NETClient.DetachCameraState to cancel the subscription. There will be no upload
even the remote device state is changed, when you cancel subscription.

After using the function module, call NETClient.Logout to log out of the device.

After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

wn
—
D

BN

wn |\
~+ |+

49

2.11.3.3 Access to the Information of Remote Device

Figure 2-17 Process of accessing to the information of remote device

O)

A 4
Initialize SDK
NETClient.Init

A 4
Log in to the device
NETClient.LoginWithHighLevelSecurity

\ 4
Get information of remote device
NETClient.MatrixGetCameras

\ 4
Log out of the device
NETClient.Logout

\ 4
Release SDK resource
NETClient.Cleanup

e

Process Description

Call NETClient.Init to initialize NetSDK.
Call NETClient.LoginWithHighLevelSecurity to log in to the device.

wn |\
~+ |+
D |MD
N =

Call NETClient.MatrixGetCameras to get the remote device information such as device

wn
—
w

type and IP.
After using the function module, call NETClient.Logout to log out of the device.

wn
—
D

BN

After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

wn
—~
(0]

50

2.11.3.4 Access to channel name of remote device

Figure 2-18 Process of accessing to channel name of remote device

=

\ 4
Initialize SDK
NETClient.Init

Y
Log in to the device
NETClient.LoginWithHighLevelSecurity

Y

Get the channel name
NETClient.GetNewDevConfig

\ 4
Log out of the device
NETClient.Logout

Y
Release SDK resource
NETClient.Cleanup

S

Process Description

Step 1 Call NETClient.Init to initialize NetSDK.

Step 2 Call NETClient.LoginWithHighLevelSecurity to log in to the device.

Step 3 Call NETClient.GetNewDevConfig to get the channel name. There are two available
commands, including CFG_CMD_VIDEOIN and CFG_CMD_CHANNELTITLE.

Step4 After using the function module, call NETClient.Logout to log out of the device.

Step 5 After using all NetSDK functions, call NETClient.Cleanup to release NetSDK resource.

2.11.4 Example Code

2.11.4.1 Direct Access to Connection State of Remote Device

// Interface 1 for getting the connection state of remote device

bool result = false;

51

NET_VIRTUALCAMERA_STATE_INFO info = new NET_VIRTUALCAMERA_STATE_INFO()
{

nStructSize = (uint)Marshal.SizeOf(typeof(NET_VIRTUALCAMERA_STATE_INFO)),
L
for (inti=0;i < device.nChanNum; ++i)
{

info.nChannellD =i;

object obj = (object)info;

result = NETClient.QueryDevState(ILoginID, EM_DEVICE_STATE.VIRTUALCAMERA, ref obj, typeof(NET_VIRT
UALCAMERA_STATE_INFO), 3000);

if (result)
{
info = (NET_VIRTUALCAMERA_STATE_INFO)obj;

Console.WriteLine("QueryDevState_ChannelState channel:{0}, state: {1}, info.nChannellD, info.emCo
nnectState.ToString());

}
else
{
Console WriteLine("QueryDevState_ChannelState fail, {0}', NETClient.GetLastError());

// Interface 2 for getting the connection state of remote device

IntPtr inPtr = IntPtr.Zero;

IntPtr outPtr = IntPtr.Zero;

NET_IN_GET_CAMERA_STATEINFO inParam = new NET_IN_GET_CAMERA_STATEINFO();
NET_OUT_GET_CAMERA_STATEINFO outParam = new NET_OUT_GET_CAMERA_STATEINFO();

inParam.dwSize = (uint)Marshal.SizeOf(typeof(NET_IN_GET_CAMERA_STATEINFO));
inParam.bGetAllFlag = true;

outParam.dwsSize = (uint)Marshal.SizeOf(typeof(NET_OUT_GET_CAMERA_STATEINFO));
outParam.nMaxNum = Devicelnfo.nChanNum;// Total channel number

outParam.pCameraStatelnfo = Marshal.AllocHGlobal(outParam.nMaxNum *
Marshal.SizeOf(typeof(NET_CAMERA_STATE_INFO)));

inPtr = Marshal.AllocHGlobal((int)inParam.dwsSize);
Marshal.StructureToPtr(inParam, inPtr, true);
outPtr = Marshal.AllocHGlobal((int)outParam.dwsSize);

Marshal.StructureToPtr(outParam, outPtr, true);

52

bool res = NETClient.QueryDevinfo(m_LoginID, EM_QUERY_DEV_INFO.GET_CAMERA_STATE, inPtr, outPtr,
3000);

if (Ires)

{
MessageBox.Show(NETClient.GetLastError());
return;

}

outParam = (NET_OUT_GET_CAMERA_STATEINFO)Marshal.PtrToStructure(outPtr,
typeof(NET_OUT_GET_CAMERA_STATEINFO));

if (outParam.nValidNum > 0)

{
var status = new NET_CAMERA_STATE_INFO[outParam.nValidNum];
for (inti = 0; i < outParam.nValidNum; i++)
{

status[i] = (NET_CAMERA_STATE_INFO)Marshal.PtrToStructure(outParam.pCameraStatelnfo + i *
Marshal.SizeOf(typeof(NET_CAMERA_STATE_INFO)), typeof(NET_CAMERA_STATE_INFO));

}

2.11.4.2 Subscription to Connection State of Remote Device

// Callback declaration of remote device state. Any change in state will return through this callback.

private static fCameraStateCallBack cameraStateCallBack = new fCameraStateCallBack(CameraStateCallBack);

// Subscription to the state of remote device
IntPtr intPtr = IntPtr.Zero;
intPtr = Marshal.AllocHGlobal(Marshal.SizeOf(typeof(IntPtr)));
int[] channels = new int[1]1{-1};
Marshal.Copy(channels, 0, intPtr, channels.Length);
NET_IN_CAMERASTATE inParam = new NET_IN_CAMERASTATE()
{
dwsSize = (uint)Marshal.SizeOf(typeof(NET_IN_CAMERASTATE)),
nChannels =1,
pChannels = intPtr,

cbCamera = cameraStateCallBack

NET_OUT_CAMERASTATE outParam = new NET_OUT_CAMERASTATE()
{
dwsSize = (uint)Marshal.SizeOf(typeof(NET_OUT_CAMERASTATE)),

53

7

IAttachHandle = NETClient.AttachCameraState(ILoginID, inParam, ref outParam);
if (IntPtr.Zero == |AttachHandle)

{
Console.WriteLine("Attach camera state fail");
}
else
{
Console.WriteLine("Attach camera state success");
}

// Stop subscription of remote device state

if(IntPtr.Zero == |AttachHandle)

{
return;
}
bool result = NETClient.DetachCameraState(IAttachHandle);
if (result)
{
Console.WriteLine("Detach camera state success");
}
else
{
Console.WriteLine("Detach camera state fail");
}

// Definition of state callback of remote device

private static void CameraStateCallBack(IntPtr ILoginID, IntPtr IAttachHandle, IntPtr pBuf, int nBufLen, IntPtr
dwUser)

{
if(ILoginID == IntPtr.Zero || IAttachHandle == IntPtr.Zero)
{
return;

}

NET_CB_CAMERASTATE state = (NET_CB_CAMERASTATE)Marshal.PtrToStructure(pBuf,
typeof(NET_CB_CAMERASTATE));

Console.WriteLine("channel: {0} state: {1}, state.nChannel, state.emConnectState.ToString());

}

54

2.11.4.3 Access to Information of Remote Device

// Access to information of remote device. This demo obtains the information of online remotedevices. You
have to call NETClient.QueryDevinfo at first, to get the online device number and device channel. And then call
NETClient.MatrixGetCameras, to get remote device information of the corresponding channel.

// nChanNum Channel number
NET_MATRIX_CAMERA_INFO[] infos = new NET_MATRIX_CAMERA_INFO[nChanNum];
NET_CAMERA_STATE_INFO[] status = new NET_CAMERA_STATE_INFO[nChanNum];

for (inti=0;i < nChanNum; i++)

{
infos[i]l.dwSize = (uint)Marshal.SizeOf(typeof(NET_MATRIX_CAMERA_INFO));
}
bool ret = NETClient.MatrixGetCameras(m_LoginID, out infos, nChanNum, 5000);
if(Iret)
{
MessageBox.Show(NETClient.GetLastError());
return;
}
for (inti=0; i < nChanNum; i++)
{
Console.WriteLine(string.Format("Channel{O}device name:{1}", i, infos[i].stuRemoteDevice.szDevType));
Console.WriteLine(string.Format("Channel{O}device name:{1}", i, infos[i]l.stuRemoteDevice.szDevName));
}

2.11.4.4 Access to Channel Name of Remote Device

// Access to channel name of remote device
AV_CFG_ChannelName[] infos = new AV_CFG_ChannelName[nChanNum];
object[] objs = new object(nChanNum];
for (inti = 0;i < infos.Length; i++)
{
infos[il.nStructSize = Marshal.SizeOf(typeof(AV_CFG_ChannelName));

objs[i] = infosli];

bool ret = GetNewDevConfig(loginID, -1, “ChannelTitle", ref objs, typeof(AV_CFG_ChannelName), 5000);
if (Iret)
{

Console.WriteLine(NETClient.GetLastError().ToString("X"));

break;

55

56

3 Interface Definition

3.1 NetSDK Initialization

3.1.1 NetSDK Initialization

Item Description
Name Initialize NetSDK.
bool Init(

fDisConnectCallBack cbDisConnect,
Function IntPtr dwUser,
NETSDK_INIT_PARAM? stulnitParam

);

[in] cbDisConnect Disconnection callback.
Parameter [in] dwUser User parameter of disconnection callback.
[in] stulnitParam NetSDK parameter initialization.
® Success: true
Return value .
e Failure: false.
e The precondition for calling other function modules of NetSDK.
e The callback will not send to the user after the device is disconnected if the

callback is set as NULL.

Note
e The dwUser parameter passed by Init will be returned with the same field

dwUser in the callback function cbDisConnect, which is convenient for

customers to locate. The other functions are the same.

3.1.2 NetSDK Cleanup

Item Description

Name Clean up NetSDK.

Function void NETCLIENT_Cleanup();

Parameter None.

Return value None.

Note Call NetSDK cleanup interface before the process stops.

3.1.3 Auto Reconnection Setting

Item Description

Name Set auto reconnection for callback.

void SetAutoReconnect(
fHaveReConnectCallBack cbAutoConnect,
IntPtr dwUser

Function

);

Parameter [in] cbAutoConnect Reconnection callback.

57

Item Description
[in] dwUser User parameter of disconnection callback.
Return value None.

Note

Set the reconnection callback interface. If the callback is set as NULL, it will not

connect automatically.

3.1.4 Network Parameter Setting

Item Description

Name Set the related parameters for network environment.

Function void SetNetworkParam(NET_PARAM? netParam);

Parameter lin] netParam Parameters such as network delay, reconnection times,

and buffer size.

Return value

None.

Note

Adjust the parameters according to the actual network environment.

3.2 Device Login

3.2.1 Login

Item Description
Name Log in to the device.
IntPtr LoginWithHighLevelSecurity(
string pchDVRIP,
ushort wDVRPort,
string pchUserName,
Function string pchPassword,
EM_LOGIN_SPAC_CAP_TYPE emSpecCap,
IntPtr pCapParam,
ref NET_DEVICEINFO_Ex devicelnfo
);
[in] pchDVRIP Device IP.
[in] wDVRPort Device port.
[in] pchUserName User name.
Parameter [in] pchPassword Password.
[in] emSpecCap Login category.
[in] pCapParam Login category parameter.
[out] devicelnfo Device information.
Return value ® Success: Returns a non-zero value.
e Failure: 0.
Note None.

58

3.2.2 Logout

Item Description
Name Log out of the device.
bool Logout(
Function IntPtr ILoginID
);
Parameter [in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Return value ® Success: true
e Failure: false.
Note None.

3.3 Real-time Monitoring

3.3.1 Opening the Real-time Monitoring

Item Description
Name Open the real-time monitoring
LLONG NETCLIENT_RealPlayEx(
LLONG ILoginID,
. int nChannellD,
Function
HWND hWnd,
DH_RealPlayType rType
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Video channel number is a round number starting from
[in] nChannellD
Parameter 0.
[in] hWnd Window handle valid only under Windows system
[in] rType Preview type
® Success: Returns a non-zero value.
Return value
e Failure: 0

Note

Windows system:

e When hWnd is valid, the corresponding window displays picture.

e When hWnd is NULL, get the video data through setting a callback and send to
user for handle.

The following table shows information about live type:

Table 3-1 Information of live type

Live Type

Meaning

Real-time live.

DH_RType_Realplay

DH_RType_Multiplay

Multi-picture live.

DH_RType_Realplay_0

Real-time monitoring—main stream, equivalent to
DH_RType_Realplay.

DH_RType_Realplay_1

Real-time monitoring—sub stream 1.

59

Live Type

Meaning

DH_RType_Realplay_2

Real-time monitoring—sub stream 2.

DH_RType_Realplay_3

Real-time monitoring—sub stream 3.

DH_RType_Multiplay_1

Multi-picture live—1 picture.

DH_RType_Multiplay_4

Multi-picture live—4 pictures.

DH_RType_Multiplay_8

Multi-picture live—8 pictures.

DH_RType_Multiplay_9

Multi-picture live—9 pictures.

DH_RType_Multiplay_16

Multi-picture live—16 pictures.

DH_RType_Multiplay_6

Multi-picture live—6 pictures.

DH_RType_Multiplay_12

Multi-picture live—12 pictures.

DH_RType_Multiplay_25

Multi-picture live—25 pictures.

DH_RType_Multiplay_36

Multi-picture live—36 pictures.

3.3.2 Stopping the Real-time Monitoring

Item Description
Name Stop the real-time monitoring.
bool StopRealPlay(
Function IntPtr IRealHandle
);
Parameter [in] IRealHandle Return value of NETClient.RealPlay.

Return value

° Success: true
e Failure: false.

Note

None.

3.3.3 Saving the Real-time Monitoring Data

Item Description
Name Save the real-time monitoring data as file.

bool SaveRealData(

. IntPtr IRealHandle,
Function) .
string pchFileName

);

[in] IRealHandle Return value of NETClient.RealPlay.
Parameter

[in] pchFileName Save path.

Return value

® Success: true
e Failure: false.

Note

None.

3.3.4 Stopping Saving the Real-time Monitoring Data

Item

Description

Name

Stop saving the real-time monitoring data as file.

60

Item Description
bool StopSaveRealData(
Function IntPtr IRealHandle
);
Parameter [in] IRealHandle Return value of NETClient.RealPlay.

Return value

® Success: true
e Failure: false.

Note

None.

3.3.5 Setting Callback of Real-time Monitoring Data

Item Description
Name Set the callback of real-time monitoring data.
bool SetRealDataCallBack(
IntPtr IRealHandle,
. fRealDataCallBackEx2 cbRealData,
Function
IntPtr dwUser,
EM_REALDATA_FLAG dwFlag
);
[in] IRealHandle Return value of NETClient.RealPlay.
[in] cbRealData Callback of monitoring data flow.
Parameter - —
[in] dwUser Parameter of callback for monitoring data flow.
[in] dwFlag Type of monitoring data in callback.
e Success: true
Return value .
e Failure:false.
Note None.

The following table shows information about parameter dwFlag:

Table 3-2 Type and meaning of dwFlag

dwFlag Meaning
0x00000001 Initial data of device.
0x00000004 Data converted to YUV format.

61

3.4 Record Playback

3.4.1 Playback by Time

Item

Description

Name

Playback by time.

Function

IntPtr PlayBackByTime(

IntPtr ILoginID,

int nChannellD,

NET_IN_PLAY_BACK_BY_TIME_INFO pstNetln,

ref NET_OUT_PLAY_BACK_BY_TIME_INFO pstNetOut
);

Parameter

[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

Device channel number.

—

in] nChannellD

—

in] pstNetin Query on input condition.

—

out] pstNetOut Query on output information.

Note

° Success: Returns a non-zero value.
Return value .
e Failure: 0.
e For the callback declaration fDataCallBack and

fDownLoadPosCallBackfDataCallBack in NET_IN_PLAY_BACK_BY_TIME_INFO,
see "Chapter 4 Callback "

® The parameters hWnd and fDownLoadDataCallBack in pstNetin cannot be
NULL at the same time; otherwise the interface calling will be failed returned.

3.4.2 Setting the Work Mode

Item Description
Name Set the work mode.
bool SetDeviceMode(
IntPtr ILoginID,
Function EM_USEDEV_MODE emType,
IntPtr pValue
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Parameter [in] emType Work mode enumeration.
[in] pValue The structure corresponding to work mode.
Return value ® Success: true
e Failure: false.
Note None.

The following table shows information about work mode enumeration and structure:

Table 3-3 Work mode and corresponding structure

emType Enumeration Meaning Structure
Set the record stream type to query

RECORD_STREAM_TYPE . None
and playback by time.

62

emType Enumeration Meaning

Structure

e 0:Main and sub stream
° 1: Main stream
® 2:Substream

Set the record file type to playback
RECORD_TYPE yp play

and download by time.

EM_RECORD_TYPE

3.4.3 Stopping Playback

Item Description
Name Stop video playback.
bool PlayBackControl(
. IntPtr IPlayHandle,
Function
PlayBackType type
);
[in] 1PlayHandle Return value of playback interface.
Parameter
[in] type Controlling type.
® Success: true
Return value
o Failure: false.
Note None.

3.4.4 Getting the OSD Playback Time

Item Description
Name Get the OSD playback time.
bool GetPlayBackOsdTime(
IntPtr IPlayHandle,
Function ref NET_TIME IpOsdTime,
ref NET_TIME IpStartTime,
ref NET_TIME IpEndTime
);
[in] IPlayHandle Return value of playback interface.
Parameter [out] IpOsdTime OSD time.
[out] IpStartTime The start time of current playback file.
[out] IpEndTime The end time of current playback file.
Return value ® Success: true
e Failure: false.
Note None.
Table 3-4 Control type enumeration
PlayBackType enumeration Meaning
Play Play
Pause Pause
Stop Stop
Fast Fast play
Slow Slow play

63

PlayBackType enumeration

Meaning

Normal

Normal play

3.5 Record Download

3.5.1 Querying Record Files within a Period

Item Description

Name Query all record files within a period.

IntPtr ILoginID,
int nChannelld,

bool QueryRecordFile(

EM_QUERY_RECORD_TYPE nRecordFileType,

DateTime tmStart,
Function DateTime tmEnd,
string pchCardid,
ref NET_RECORDFILE_INFOI] nriFileinfo,
ref int filecount,
int waittime,
bool bTime
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in] nChannelld Device channel number starting from 0.
[in] nRecordFileType Record file type.
[in] tmStart Record start time.
[in] tmEnd Record end time.
[in] pchCardid Card ID.
Parameter

[out] nriFileinfo

The returned record file is a NET_RECORDFILE_INFO
structured data.

[out] filecount

The number of returned files. The output parameters can
only check the recordings until the buffer is full.

[in] waittime

Waiting time.

[in] bTime

Invalid currently.

® Success: true
Return value)
e Failure: false.

Before playback, call this interface to query the records. When the queried records
Note within the input time are larger than the buffer size, it will only return the records that
can be stored by buffer. Continue with the query if needed.

The following table shows information about record file type and card ID:

Table 3-5 Record file type and card ID

EM_QUERY_RECORD_TYPE .

. Record File Type Card ID
Enumeration
ALL All record files NULL

64

EM_QUERY_RECORD_TYPE
. Record File Type Card ID
Enumeration
ALARM External alarm NULL
Alarm by dynamical
MOTION_DETECT . NULL
detection
ALARM_ALL All the alarms NULL
CARD Card IP query Card ID
. L Card ID && Transaction type &&
Combined conditions .
CONDITION Transaction amount (If you want to
uer
query skip afield, set as blank)
Record location and
JOIN L. NULL
deviation length
Pictures queried by card
ID (Only s ted b
CARD_PICTURE (Only supported by Card ID
some models of HB-U
and NVS)
Query pictures (Only
PICTURE supported by some NULL
models of HB-U and NVS)
. FELD1&&FELD2&&FELD3&& (If you
FIELD Query by field .)
want to skip a field, set as blank)

3.5.2 Opening the Record Query Handle

Item Description
Name Open the record query handle.
IntPtr FindFile(
IntPtr ILoginID,
EM_FILE_QUERY_TYPE emType,
Function object oQueryCondition,
Type tyCondition,
int waittime
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in] emType Record file type. For details, see Table 3-5.
Parameter
[in] oQueryCondition Query condition.
[in] waittime Query timeout.
Return value ® Success: Returns a non-zero value.
e Failure: 0.
Note None.

3.5.3 Finding the Record File

Item

Description

Name

Find the record file.

65

Item Description
int FindNextFile(
IntPtr IFindHandle,
int nFilecount,
Function List<object> IsOMediaFilelnfo,
Type tyFile,
int waittime
);
o Return value of NETClient.FindFile (open the record query
[in] IFindHandle
handle).
[in] nFilecount Number of the found files.
Parameter
[out] IsOMediaFilelnfo Information of the found files.
[in] tyFile Information type of the found files.
[in] waittime Query timeout. The unit is millisecond.
Return value | Number of the found file information.
Note Before calling this interface, call NETClient.FindFile to open the query handle.

3.5.4 Closing the Record Query Handle

Item Description
Name Close the record query handle.
bool FindClose(
Function IntPtr [FindHandle
);
) . Return value of NETClient.FindFile (open the record query
Parameter [in] IFindHandle

handle).

Return value

° Success: true
e Failure: false.

Note

Call NETClient.FindFile to open the query handle. After query is finished, call this

function to close the query handle.

3.5.5 Downloading Record by File

Item Description
Name Download record by file.
IntPtr DownloadByRecordFile(
IntPtr ILoginID,
ref NET_RECORDFILE_INFO IpRecordFile,
Function string sSavedFileName,
fDownLoadPosCallBack cbDownLoadPos,
IntPtr dwUserData
)i
Return value of
[in] ILoginID . o)
NETClient.LoginWithHighLevelSecurity.
Parameter
[out] IpRecordFile The information pointer of record file.
[in] sSavedFileName The record file name and full save path.

66

Item Description

[in] cbDownLoadPos Download progress callback.

[in] dwUserData Download progress callback customized data.

® Success: Returns a non-zero value.
Return value i
e Failure: 0.

e For callback declaration of fDownLoadPosCallBack, see "Chapter 4 Callback "

e sSavedFileName is not blank, and the record data is input into the file

Note corresponding with the path.

e fDownlLoadDataCallBack is not blank, and the record data is returned through
callback function.

3.5.6 Downloading Record by Time

Item Description

Name Download record by time.

IntPtr DownloadByTime(
IntPtr ILoginID,
int nChannelld,
EM_QUERY_RECORD_TYPE nRecordFileType,
DateTime tmStart,
DateTime tmEnd,
Function string sSavedFileName,
fTimeDownLoadPosCallBack cbTimeDownLoadPos,

IntPtr dwUserData,

fDataCallBack fDownLoadDataCallBack,

IntPtr dwDataUser,

IntPtr pReserved
);
{in] ILoginiD Return value of

NETClient.LoginWithHighLevelSecurity.
[in] nChannelld The device channel number starting from 0.
[in] nRecordFileType Record file type. For details, see Table 3-5.
[in] tmStart Start time of download.
Parameter [in] tmEnd End time of download.

[in] sSavedFileName The record file name and full save path.
[in]lcbTimeDownLoadPos Download progress callback.
[in] dwUserData Download progress callback customized data.
[in] fDownLoadDataCallBack Download data callback.
[in] dwUserData Download data callback customized data.
[in] pReserved Parameter reserved and the default is NULL.

° Success: Returns a non-zero value.
Return value

e Failure: 0.

67

Item Description
e For callback declaration of fDataCallBack and fDownlLoadPosCallBack, see
"Chapter 4 Callback
Note e sSavedFileName is not blank, and the record data is input into the file

corresponding with the path.
e fDownloadDataCallBack is not blank, and the record data is returned through
callback.

3.5.7 Querying the record downloading progress

Item Description
Name Query the record downloading progress.
bool GetDownloadPos(
IntPtr IFileHandle,
Function ref int nTotalSize,
ref int nDownLoadSize
);
[in] IFileHandle Return value of download interface.
Parameter [out] nTotalSize The total length of download and the unit is KB.

[out] nDownlLoadSize

The downloaded length and the unit is KB.

Return value

° Success: true

e Failure: false.

Note

® Get the current location of the record to be downloaded to apply to display
interface that does not need to display real-time download progress. It is similar to
the function of download callback.

e (Calculate the progress without using the callback. Call this interface regularly to
get the current progress.

3.5.8 Stopping Record Downloading

Item Description
Name Stop record downloading.
bool StopDownloadMediaFile(
Function IntPtr IFileHandle
);
Parameter [in] IFileHandle Return value of download interface

Return value

° Success: true
e Failure: false.

Note

Stop downloading after it is completed or partially completed according to particular
situation.

68

3.6 PTZ Control

3.6.1 PTZ Control

Item Description

Name PTZ control.

bool PTZControl(
IntPtr ILoginID,
int nChannellD,
EM_EXTPTZ_ControlType dwPTZCommand,

Function int IParam1,
int IParam2,
int IParam3,
bool dwStop,
IntPtr param4
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Video channel number that is a whole number and starts
[in] nChannellD
from 0.
[in] dwPTZCommand Control command type.
[in] IParam1 Parameter 1.
[in] IParam2 Parameter 2.
[in] IParam3 Parameter 3.
Stop mark, which is valid for operations of eight directions.
[in] dwStop When performing other operations, enter FALSE for this
parameter.
Parameter Support the following extension command:

EM_EXTPTZ_ControlType.MOVE_ABSOLUTELY
EM_EXTPTZ_ControlType.MOVE_CONTINUOUSLY
EM_EXTPTZ_ControlType.GOTOPRESET
EM_EXTPTZ_ControlType.SET_VIEW_RANGE

[in] param4 EM_EXTPTZ_ControlType.FOCUS_ABSOLUTELY
EM_EXTPTZ_ControlType.HORSECTORSCAN
EM_EXTPTZ_ControlType.VERSECTORSCAN
EM_EXTPTZ_ControlType.SET_FISHEYE_EPTZ
EM_EXTPTZ_ControlType.SET_TRACK_START/SET_TRACK_S
TOP

® Success: true
Return value i
e Failure: false.

For the relationship between dwPTZCommand and Param1, Param2 and Param3, see
Table 3-6.

Note

69

Table 3-6 Relationship between command and parameters

EM_EXTPTZ_ControlType

. Function parami param2 param3
Enumeration
Vertical
UP_CONTROL Up None None
speed (1-8)
Vertical
DOWN_CONTROL Down None None
speed (1-8)
Horizontal
LEFT_CONTROL Left None None
speed (1-8)
. Horizontal
RIGHT_CONTROL Right None None
speed (1-8)
ZOOM_ADD_CONTROL Zoom+ None Multi-speed None
ZOOM_DEC_CONTROL Zoom- None Multi-speed None
FOCUS_ADD_CONTROL Focus+ None Multi-speed None
FOCUS_DEC_CONTROL Focus- None Multi-speed None
APERTURE_ADD_CONTROL Aperture+ None Multi-speed None
APERTURE_DEC_CONTROL Aperture - None Multi-speed None
Value of
POINT_MOVE_CONTROL Move to preset | None None
preset
Value of
POINT_SET_CONTROL Set None None
preset
Value of
POINT_DEL_CONTROL Delete None None
preset
. 76:0n
Cruise among .
POINT_LOOP_CONTROL Cruise route None 99: Auto
presets
96: Off
. 0x01:On x00:
LAMP_CONTROL Lamp wiper Off None None
Vertical speed | Horizontal
LEFTTOP Left top None
(1-8) speed (1-8)
. Vertical speed | Horizontal
RIGHTTOP Right top None
(1-8) speed (1-8)
Vertical speed | Horizontal
LEFTDOWN Left bottom None
(1-8) speed (1-8)
. Vertical speed | Horizontal
RIGHTDOWN Right bottom None
(1-8) speed (1-8)
Add preset to . Value of
ADDTOLOOP . Cruise route None
cruise preset
Delete preset . Value of
DELFROMLOOP L . Cruise route None
point in cruise preset
CLOSELOOP Delete cruise Cruise route None None
Start
STARTPANCRUISE horizontal None None None
rotation
Stop horizontal
STOPPANCRUISE None None None

rotation

70

EM_EXTPTZ_ControlType

. Function parami param2 param3
Enumeration
SETLEFTBORDER Set left border | None None None
Set right
SETRIGHTBORDER None None None
border
STARTLINESCAN Start line scan None None None
CLOSELINESCAN Stop line scan None None None
SETMODESTART Set mode start | Mode route None None
SETMODESTOP Set mode stop | Mode route None None
RUNMODE Running mode | Mode route None None
STOPMODE Stop mode Mode route None None
DELETEMODE Delete mode Mode route None None
Reverse
REVERSECOMM None None None
command
Fast Horizontal Vertical
as
FASTGOTO L coordinate (0- | coordinate Zoom (4)
positioning
8192) (0-8192)
Open auxiliary . .
AUXIOPEN . Auxiliary point | None None
switch
Close auxiliary . .
AUXICLOSE . Auxiliary point | None None
switch
OPENMENU Open menu None None None
CLOSEMENU Close menu None None None
MENUOK Menu confirm | None None None
MENUCANCEL Menu cancel None None None
MENUUP Menu up None None None
MENUDOWN Menu down None None None
MENULEFT Menu left None None None
MENURIGHT Menu right None None None
Alarm action .
Linkage
) . type:
Alarm action Alarm input value, such
ALARMHANDLE . Preset
with PTZ channel . as preset
Line scan
. number
Cruise
Monitor device
. . number (video | Video input Matrix
MATRIXSWITCH Matrix switch
output number number
number)
. Refer to
Light
LIGHTCONTROL DH_PTZ_LAMP | None None
controller
_CONTROL
. Vertical
L Horizontal . Zoom (1-
EXACTGOTO 3D positioning coordinate
angle (0-3600) 128)
(0-900)
RESETZERO Reset to zero None None None
UP_TELE Up +TELE Speed (1-8) None None

71

EM_EXTPTZ_ControlType .
. Function parami param2 param3

Enumeration

DOWN_TELE Down +TELE Speed (1-8) None None

LEFT_TELE Left +TELE Speed (1-8) None None

RIGHT _TELE Right+TELE Speed (1-8) None None

LEFTUP_TELE Leftup +TELE Speed (1-8) None None
Leftdown

LEFTDOWN_TELE Speed (1-8) None None
+TELE

TIGHTUP_TELE Rightup+TELE | Speed (1-8) None None
Rightdown

RIGHTDOWN_TELE Speed (1-8) None None
+TELE

UP_WIDE Up +WIDE Speed (1-8) None None

DOWN_WIDE Down+WIDE Speed (1-8) None None

LEFT_WIDE Left +WIDE Speed (1-8) None None

RIGHT_WIDE Right+WIDE Speed (1-8) None None

LEFTUP_WIDE Leftup+WIDE Speed (1-8) None None
Leftdown+WID

LEFTDOWN_WIDE e Speed (1-8) None None
Rightup

TIGHTUP_WIDE Speed (1-8) None None
+WIDE
Rightdown

RIGHTDOWN_WIDE Speed (1-8) None None
+WIDE

3.7 Voice Talk

3.7.1 Opening Voice Talk

Item Description
Name Open voice talk.
IntPtr StartTalk(
IntPtr ILoginID,
Function fAudioDataCallBack pfcb,
IntPtr dwUser
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Parameter [in] pfcb Audio data callback.
[in] dwUser Parameter of audio data callback.
Return value ® Success: Returns a non-zero value.
e Failure: 0.
Note None.

72

3.7.2 Stopping Voice Talk

Item Description
Name Stop voice talk.
bool StopTalk(
Function IntPtr [TalkHandle
);
Parameter [in] [TalkHandle Return value of NETClient.StartTalk.

Return value

° Success: true

e Failure: false.

Note

None.

3.7.3 Starting Local Recording

Item Description
Name Start local recording.
bool RecordStart(
Function IntPtr ILoginID
);
Parameter [in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

Return value

° Success: true
o Failure: false.

Note

None.

3.7.4 Stopping Local Recording

Item Description
Name Stop local recording.
bool RecordStop(
Function IntPtr ILoginID
);
Parameter [in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

Return value

° Success: true
o Failure: false.

Note

None.

73

3.7.5 Talk Data Sending

Item Description
Name Send audio data to device.
int TalkSendData(
IntPtr ITalkHandle,
Function IntPtr pSendBuf,
uint dwBufSize
);
[in] ITalkHandle Return value of NETClient.StartTalk.
[in] pSendBuf Pointer of audio data block that needs sending.
Parameter
. i Length of audio data block that needs sending. The unit
[in] dwBufSize .
is byte.
® Success: Length of audio data block.
Return value
e Failure:-1.
Note None.

3.7.6 Audio Decoding

Item Description
Name Decode audio data.
void AudioDec(
. IntPtr pAudioDataBuf,
Function
uint dwBufSize
)i
[in] pAudioDataBuf Pointer of audio data block that needs decoding.
Parameter .) Length of audio data block that needs decoding. The
[in] dwBufSize -
unit is byte.
Return value None.
Note None.

74

3.8 Video Snapshot

3.8.1 Capturing Picture to File

Item Description
Name Capture image.
bool SnapPictureToFile(
IntPtr ILoginID,
. ref NET_IN_SNAP_PIC_TO_FILE_PARAM inParam,
Function
ref NET_OUT_SNAP_PIC_TO_FILE_PARAM outParam,
int nWaitTime
)i
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in] inParam Input parameter.
Parameter
[in] outParam Output parameter.
[in] nWaitTime Timeout. The unit is millisecond.

Return value

° Success: true

e Failure: false.

Note

Synchronous interface. The device captures picture and sends to the user through
network.

This function is required on some devices.

3.8.2 Capturing Picture

Item

Description

Name

Capture image.

Function

bool CapturePicture(
IntPtr hPlayHandle,
string pchPicFileName,
EM_NET_CAPTURE_FORMATS eFormat
);

Parameter

[in] hPlayHandle Return value of NETClient.RealPlay.

[in] hPlayHandle The file path which need to be saved.

[in] pchPicFileName Picture format.

Return value

° Success: true

Failure: false.

Note

)

® Synchronous interface. Write the picture data into file.

e The picture is captured from the real-time monitoring data stream sent by the
device.

75

3.9 Intelligent Event

3.9.1 Subscribing Intelligent Event

Item

Description

Name

Subscribe intelligent event.

Function

IntPtr RealLoadPicture(
IntPtr ILoginID,
int nChannellD,
uint dwAlarmType,
bool bNeedPicFile,
fAnalyzerDataCallBack cbAnalyzerData,
IntPtr dwUser,
IntPtr reserved

);

Parameter

[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

[in] nChannellD Channel ID.

[in] dwAlarmType Intelligent traffic event types.

[in] bNeedPicFile Whether picture file is needed.

[in] cbAnalyzerData Intelligent event callback function.

[in] dwUser The user customized data.

[in] reserved Reserved parameter.

Return value

® Success: Returns a non-zero value.
e Failure: 0.

Note

e Manual snapshot of intelligent traffic needs to call this interface in advance to
receive snapshots.

e Intelligent traffic event reporting needs to call this interface in advance to receive
intelligent traffic event information and pictures.

3.9.2 Unsubscribing Smart

Item Description
Name Unsubscribe intelligent event.
bool StopLoadPic(
Function IntPtr [AnalyzerHandle
);
Parameter [in] ILoginID Return value of NETClient.RealLoadPicture.

Return value

° Success: true

e Failure: false.

Note

None

76

3.10 Alarm Upload

3.10.1 Setting Alarm Callback

Item Description
Name Set alarm callback.
void SetDVRMessCallBack(
. fMessCallBackEx cbMessage,
Function
IntPtr dwUser
)i
® Message callback that can call the device status, such as
[in] cbMessage alarm status.
Parameter

e When setting as 0, the calling is prohibited.

The user customized data.

[in] dwUser

Return value

None.

Note

e Sets device message callback to obtain the device current status. It has nothing to
do with the calling sequence. There’s no calling by default.

e The callback fMessCallBack is valid after calling the alarm message subscription
interface StartListen first.

3.10.2 Subscribing to Alarm

Item Description
Name Subscribe to alarm.
bool StartListen(
Function IntPtr ILoginID
);
Parameter [in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

Return value

° Success: true
e Failure: false.

Note

The message from the subscribed device is called from the set value of
SetDVRMessCallBack.

3.10.3 Stopping Alarm Subscription

Item Description
Name Stop alarm subscription.
bool StopListen(
Function IntPtr ILoginID
);
Parameter [in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

Return value

° Success: true

e Failure: false.

Note

None.

77

3.11 Device Status and Information

3.11.1 Querying Device State

Item Description
Name Directly get the connection status of remote device.
bool QueryDevState(
IntPtr ILoginID,
int nType,
Function ref object obj,
Type typeName,
int waittime
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
Query the information type. When the connection status of
[in] nType remote device is obtained, the nType becomes
EM_DEVICE_STATE.VIRTUALCAMERA.
Parameter Receives the data buffer returned from query. The
[out] obj corresponding structure is
NET_VIRTUALCAMERA_STATE_INFO.
[in] typeName Query structure type.
[in] waittime Waiting time for query.
Return value ® Success: true
® Failure: false.
Note None.

3.11.2 Querying Device Information

Item Description
Name Directly get the connection status of remote device.
bool QueryDevinfo(
IntPtr ILoginID,
EM_QUERY_DEV_INFO emQueryType,
Function IntPtr pInBuf,
IntPtr pOutBuf,
int nWaitTime = 1000
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity..
Query type: When the connection status of device is
[in] emQueryType obtained, nQueryType becomes
EM_QUERY_DEV_INFO.GET_CAMERA_STATE.
Parameter
Input buffer. When the connection status of device is
[in] pInBuf obtained, the corresponding structure is
NET_IN_GET_CAMERA_STATEINFO.
[out] pOutBuf Output buffer. When the connection status of device is

78

Item

Description

obtained, the corresponding structure is
NET_OUT_GET_CAMERA_STATEINFO.

[in] nWaitTime Waiting time for query. The default is 1000ms.

Return value

° Success: true
e Failure: false.

Note

None.

3.11.3 Subscribing to State of Remote Device

Item Description
Name Subscribe to the remote device status.
IntPtr AttachCameraState(
IntPtr ILoginID,
. NET_IN_CAMERASTATE pstinParam,
Function
ref NET_OUT_CAMERASTATE pstOutParam,
int nWaitTime = 3000
)i
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in] pstinParam Subscription input parameter.
Parameter
[out] pstOutParam Subscription output parameter.
[in] nWaitTime Waiting time for query. The default is 3000ms.
® Success: Returns a non-zero value.
Return value
e Failure: 0.
Not For the state callback (fCameraStateCallBack) in the input parameter, see "Chapter 4
ote
Callback

3.11.4 Stopping Subscribing State of Remote Device

Item Description
Name Stop subscribing the state of remote device.
bool DetachCameraState(
Function IntPtr IAttachHandle
);
Parameter [in] IAttachHandle Return value of subscribing remote device state.

Return value

° Success: true

e Failure: false.

Note

None.

3.11.5 Getting Information of Remote Device

Item

Description

Name

Get the remote device information.

79

Item

Description

Function

bool MatrixGetCameras(
IntPtr ILoginID,
out NET_MATRIX_CAMERA_INFO[] stuCameras,
int nMaxCameraCount,
int nWaitTime

’

Parameter

in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.

in] nMaxCameraCount Number of query cameras.

)
[
[out] stuCameras Structure array of information of query cameras.
[
[

]
]

in] nWaitTime Waiting time for query.

Return value

° Success: true

e Failure: false.

Note

None.

3.11.6 Getting Channel Name

Item Description
Name Get the channel name.
bool GetNewDevConfig(
IntPtr ILoginID,
Int32 IChannel,
. string strCommand,
Function
ref object obj,
Type typeName,
int waittime
);
[in] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[in] IChannel Device channel number starting from 0.
) Command parameter. Query channel name szCommand
[in] strCommand . i
is NETCLIENT_GetNewDevConfig.
Parameter
. Query information array, and the corresponding structure
[out] obj .
is AV_CFG_ChannelName.
[in] typeName Query structure type.
[in] waittime Waiting timeout for query. The default is 1000ms.
® Success: true
Return value
® Failure: false.
Note None.

80

4 Callback Function

4.1 fDisConnectCallBack

Item Description
Name Disconnection callback.
public delegate void fDisConnectCallBack(
IntPtr ILoginID,
. IntPtr pchDVRIP,
Function
int nDVRPort,
IntPtr dwUser
);
[out] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[out] pchDVRIP IP of the disconnected device.
Parameter
[out] nDVRPort Port of the disconnected device.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

4.2 fHaveReConnectCallBack

Item Description
Name Reconnection callback.
public delegate void fHaveReConnectCallBack(
IntPtr ILoginID,
. IntPtr pchDVRIP,
Function
int nDVRPort,
IntPtr dwUser
);
[out] ILoginID Return value of NETClient.LoginWithHighLevelSecurity.
[out] pchDVRIP IP of the reconnected device.
Parameter
[out] nDVRPort Port of the reconnected device.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

4.3 fRealDataCallBackEx

Item Description
Name Callback of real-time monitoring data.
Function public delegate void fRealDataCallBackEx(

81

Item Description
IntPtr IRealHandle,
uint dwDataType,
IntPtr pBuffer,
uint dwBufSize,
int param,
IntPtr dwUser
);
[out] IRealHandle Return value of NETClient.RealPlay.
Data type:
[out] dwDataType e 0:Initial data.
e 2:YUVdata.
[out] pBuffer Address of monitoring data block.
[out] dwBufSize Length of the monitoring data block. The unit is byte.
Parameter
Callback parameter structure. Different dwDataType value
corresponds to different type.
[out] param ® The param is blank pointer when dwDataType is 0.
® The param is the pointer of tagCBYUVDataParam
structure when dwDataType is 2.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

4.4 fAudioDataCallBack

Item Description
Name Callback of audio data of voice talk.
public delegate void fAudioDataCallBack(
IntPtr ITalkHandle,
IntPtr pDataBuf,
Function uint dwBufSize,
byte byAudioFlag,
IntPtr dwUser
);
[out] ITalkHandle Return value of NETClient.StartTalk.
[out] pDataBuf Address of audio data block.
[out] dwBufSize Length of the audio data block. The unit is byte.
Parameter Data type:
[out] byAudioFlag e 0:Llocal collecting.
e 1:Device sending.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

82

4.5 fDownLoadPosCallBack

Item Description
Name Progress callback of playback and download by file.
public delegate void fDownLoadPosCallBack(
IntPtr IPlayHandle,
Function uint dwTotalSize,
uint dwDownLoadSize,
IntPtr dwUser
);
[out]IPlayHandle Return value of playback or download.
[out]dwTotalSize Total size. The unit is KB.
Parameter The downloaded size. The unit is KB
[outldwDownLoadSize e -1:Current playback stopped.
e -2:Failed to write file.
[out]ldwUser User parameter of the callback.
Return value None.
Note None.

4.6 fDataCallBack

Item Description
Name Callback of playback and download data.
public delegate int fDataCallBack(
IntPtr IRealHandle,
uint dwDataType,
Function IntPtr pBuffer,
uint dwBufSize,
IntPtr dwUser
);
[out]IPlayHandle Return value of playback or download interface.
[out] dwDataType 0 (original data).
Parameter [out] pBuffer Data buffer.
[out] dwBufSize Buffer length. The unit is byte.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

4.7 fTimeDownLoadPosCallBack

Item Description
Name Callback of download by time.
Function public delegate void fTimeDownLoadPosCallBack(

83

Item Description
IntPtr IPlayHandle,
uint dwTotalSize,
uint dwDownLoadSize,
intindex,
NET_RECORDFILE_INFO recordfileinfo,
IntPtr dwUser
);
[out]IPlayHandle Return value of download interface.
[out] dwTotalSize Total size of playback. The unit is KB.
The size that has been played. The unit is KB.
[out]ldwDownLoadSize e -1:Current download finished.
Parameter
e -2:Write file failed.
[out] index Index.
[out] recordfileinfo Record file information.
[out] dwUser User parameter of the callback.
Return value None.
Note None.

4.8 fMessCallBackEx

Item Description
Name Alarm callback.
public delegate bool fMessCallBackEx(
int ICommand,
IntPtr ILoginID,
IntPtr pBuf,
uint dwBuflLen,
Function IntPtr pchDVRIP,
int nDVRPort,
bool bAlarmAckFlag,
int nEventlD,
IntPtr dwUser
);
[out] ICommand Alarm type. For details, see Table 4-1.
[out] ILoginID Return value of login interface.
Receives the buffer of alarm data. The entered data is
[out] pBuf different dependent on the listen data and value of
ICommand.
Parameter [out] dwBufLen Length of pBuf. The unit is byte.
[out] pchDVRIP Device IP.
[out] nDVRPort Device port.
The event can be confirmed when the parameter is TRUE,
[out] bAlarmAckFlag and the event cannot be confirmed when the parameter is
FALSE.

84

Item

Description

[out] nEventID

Assign values for CLIENT_AlarmAck interface. When
bAlarmAckFlag is TRUE, the data is valid.

[out] dwUser

User parameter of the callback.

Return value

° Success: true.
e Failure: false.

Note

In general, set the callback when initializing. Provide the different treatment to
callback dependent on the device ID and command value.

For the information about alarm type, see Table 4-1.

Table 4-1 Alarm type

Alarm Type

Description

pBuf

MOTION_ALARM_EX

Motion detect

The number of data byte is the same
with video channel number. Each byte
represents the alarm state by dynamic

alarm detection of a video channel.
e 1:Alarm.
e 0:Noalarm.
Alarm by hard disk
ALARM_STORAGE_FAILURE damage ALARM_STORAGE_FAILURE data group.

VIDEOLOST_ALARM_EX

Video loss alarm

The number of data byte is the same
with video channel number. Each byte
represents the alarm state by video loss
of a video channel.

e 1:Alarm.

e 0:Noalarm.

ALARM_FRONTDISCONNECT

Alarm by IPC
disconnection

ALARM_FRONTDISCONNET_INFO.

ALARM_ALARM_EX

External alarm

The number of data byte is the same with
Each byte
state of alarm

video channel number.
represents the alarm
channel.

e 1:Alarm.

e 0:Noalarm.

4.9 fCameraStateCallBack

Item

Description

Name

Callback of remote device state.

Function

public delegate void fCameraStateCallBack(
IntPtr ILoginID,
IntPtr IAttachHandle,
IntPtr pBuf,
int nBuflLen,
IntPtr dwUser

85

Item Description

);

[out] ILoginID Alarm type.

[out] IAttachHandle Return value of subscription.
Parameter [out] pBuf State of front-end device.

[out] nBufLen The length of returned data.

[out] dwUser User parameter of the callback.
Return value None.

Note

After subscribing the remote device state, if the state of front-end device changes, the
information of changed device will be reported.

4.10 fAnalyzerDataCallBack

Item Description
Name Callback of remote device state.
public delegate int fAnalyzerDataCallBack(
IntPtr IAnalyzerHandle,
uint dwEventType,
IntPtr pEventinfo,
IntPtr pBuffer,
Function
uint dwBufSize,
IntPtr dwUser,
int nSequence,
IntPtr reserved
);
[out] IAnalyzerHandle Return value of NETClient.RealLoadPicture.
[out] dwEventType Intelligrent event type.
[out] pEventinfo Event inforamtion buffer.
[out] pBuffer Image buffer.
Parameter
[out] dwBufSize Image buffer size.
[out] dwUser User data.
[out] nSequence Serial number.
[out] reserved Reserved.
Return value None.
Note After subscribing the remote device state, if the state of front-end device changes, the
information of changed device will be reported.

86

Appendix 1 Cybersecurity Recommendations

Cybersecurity is more than just a buzzword: it's something that pertains to every device that is

connected to the internet. IP video surveillance is not immune to cyber risks, but taking basic steps

toward protecting and strengthening networks and networked appliances will make them less

susceptible to attacks. Below are some tips and recommendations on how to create a more secured

security system.

Mandatory actions to be taken for basic device network security:

1.

Use Strong Passwords

Please refer to the following suggestions to set passwords:

o Thelength should not be less than 8 characters;

e Include at least two types of characters; character types include upper and lower case
letters, numbers and symbols;

o Do not contain the account name or the account name in reverse order;

e Do not use continuous characters, such as 123, abg, etc,;

o Do not use overlapped characters, such as 111, aaa, etc,;

Update Firmware and Client Software in Time

o According to the standard procedure in Tech-industry, we recommend to keep your device
(such as NVR, DVR, IP camera, etc.) firmware up-to-date to ensure the system is equipped
with the latest security patches and fixes. When the device is connected to the public
network, it is recommended to enable the “auto-check for updates” function to obtain
timely information of firmware updates released by the manufacturer.

e We suggest that you download and use the latest version of client software.

"Nice to have" recommendations to improve your device network security:

1.

Physical Protection

We suggest that you perform physical protection to device, especially storage devices. For
example, place the device in a special computer room and cabinet, and implement well-done
access control permission and key management to prevent unauthorized personnel from
carrying out physical contacts such as damaging hardware, unauthorized connection of
removable device (such as USB flash disk, serial port), etc.

Change Passwords Regularly

We suggest that you change passwords regularly to reduce the risk of being guessed or cracked.
Set and Update Passwords Reset Information Timely

The device supports password reset function. Please set up related information for password
reset in time, including the end user’s mailbox and password protection questions. If the
information changes, please modify it in time. When setting password protection questions, it is
suggested not to use those that can be easily guessed.

Enable Account Lock

The account lock feature is enabled by default, and we recommend you to keep it on to
guarantee the account security. If an attacker attempts to log in with the wrong password
several times, the corresponding account and the source IP address will be locked.

Change Default HTTP and Other Service Ports

87

10.

11.

12.

13.

We suggest you to change default HTTP and other service ports into any set of numbers
between 1024~65535, reducing the risk of outsiders being able to guess which ports you are
using.

Enable HTTPS

We suggest you to enable HTTPS, so that you visit Web service through a secure communication

channel.

MAC Address Binding

We recommend you to bind the IP and MAC address of the gateway to the device, thus reducing

the risk of ARP spoofing.

Assign Accounts and Privileges Reasonably

According to business and management requirements, reasonably add users and assign a

minimum set of permissions to them.

Disable Unnecessary Services and Choose Secure Modes

If not needed, it is recommended to turn off some services such as SNMP, SMTP, UPnP, etc., to

reduce risks.

If necessary, it is highly recommended that you use safe modes, including but not limited to the

following services:

e SNMP: Choose SNMP v3, and set up strong encryption passwords and authentication
passwords.

® SMTP: Choose TLS to access mailbox server.

o FTP: Choose SFTP, and set up strong passwords.

o AP hotspot: Choose WPA2-PSK encryption mode, and set up strong passwords.

Audio and Video Encrypted Transmission

If your audio and video data contents are very important or sensitive, we recommend that you

use encrypted transmission function, to reduce the risk of audio and video data being stolen

during transmission.

Reminder: encrypted transmission will cause some loss in transmission efficiency.

Secure Auditing

e Check online users: we suggest that you check online users regularly to see if the device is
logged in without authorization.

o Check device log: By viewing the logs, you can know the IP addresses that were used to log
in to your devices and their key operations.

Network Log

Due to the limited storage capacity of the device, the stored log is limited. If you need to save

the log for a long time, it is recommended that you enable the network log function to ensure

that the critical logs are synchronized to the network log server for tracing.

Construct a Safe Network Environment

In order to better ensure the safety of device and reduce potential cyber risks, we recommend:

e Disable the port mapping function of the router to avoid direct access to the intranet
devices from external network.

e The network should be partitioned and isolated according to the actual network needs. If
there are no communication requirements between two sub networks, it is suggested to
use VLAN, network GAP and other technologies to partition the network, so as to achieve
the network isolation effect.

e Establish the 802.1x access authentication system to reduce the risk of unauthorized access
to private networks.

88

e Enable IP/MAC address filtering function to limit the range of hosts allowed to access the
device.

89

	Foreword
	Glossary
	1 Overview
	1.1 General
	1.2 Applicability

	2 Function Modules
	2.1 NetSDK Initialization
	2.1.1 Introduction
	2.1.2 Interface Overview
	2.1.3 Process
	2.1.4 Example Code

	2.2 Device Login and Logout
	2.2.1 Introduction
	2.2.2 Interface Overview
	2.2.3 Process
	2.2.4 Example Code

	2.3 Real-time Monitoring
	2.3.1 Introduction
	2.3.2 Interface Overview
	2.3.3 Process
	2.3.3.1 NetSDK Decoding Library
	2.3.3.2 Call Third Party Play Library

	2.3.4 Example Code
	2.3.4.1 NetSDK Decoding Play
	2.3.4.2 Call Play Library

	2.4 Record Playback
	2.4.1 Introduction
	2.4.2 Interface Overview
	2.4.3 Process
	2.4.4 Example Code

	2.5 Record Download
	2.5.1 Introduction
	2.5.2 Interface Overview
	2.5.3 Process
	2.5.3.1 Downloading by File
	2.5.3.2 Downloading by Time

	2.5.4 Example Code
	2.5.4.1 Downloading by File
	2.5.4.2 Downloading by Time

	2.6 PTZ Control
	2.6.1 Introduction
	2.6.2 Interface Overview
	2.6.3 Process
	2.6.4 Example Code

	2.7 Voice Talk
	2.7.1 Introduction
	2.7.2 Interface Overview
	2.7.3 Process
	2.7.4 Example Code

	2.8 Video Snapshot
	2.8.1 Introduction
	2.8.2 Interface Overview
	2.8.3 Process
	2.8.3.1 Network Snapshot
	2.8.3.2 Local Snapshot

	2.8.4 Example Code

	2.9 Subscribing Intelligent Event
	2.9.1 Introduction
	2.9.2 Interface Overview
	2.9.3 Process
	2.9.4 Example Code

	2.10 Alarm Upload
	2.10.1 Introduction
	2.10.2 Interface Overview
	2.10.3 Process
	2.10.4 Example Code

	2.11 Device Status and Information
	2.11.1 Introduction
	2.11.2 Interface Overview
	2.11.3 Process
	2.11.3.1 Direct Access to Connection State of Remote Device
	2.11.3.2 Subscription to Connection State of Remote Device
	2.11.3.3 Access to the Information of Remote Device
	2.11.3.4 Access to channel name of remote device

	2.11.4 Example Code
	2.11.4.1 Direct Access to Connection State of Remote Device
	2.11.4.2 Subscription to Connection State of Remote Device
	2.11.4.3 Access to Information of Remote Device
	2.11.4.4 Access to Channel Name of Remote Device

	3 Interface Definition
	3.1 NetSDK Initialization
	3.1.1 NetSDK Initialization
	3.1.2 NetSDK Cleanup
	3.1.3 Auto Reconnection Setting
	3.1.4 Network Parameter Setting

	3.2 Device Login
	3.2.1 Login
	3.2.2 Logout

	3.3 Real-time Monitoring
	3.3.1 Opening the Real-time Monitoring
	3.3.2 Stopping the Real-time Monitoring
	3.3.3 Saving the Real-time Monitoring Data
	3.3.4 Stopping Saving the Real-time Monitoring Data
	3.3.5 Setting Callback of Real-time Monitoring Data

	3.4 Record Playback
	3.4.1 Playback by Time
	3.4.2 Setting the Work Mode
	3.4.3 Stopping Playback
	3.4.4 Getting the OSD Playback Time

	3.5 Record Download
	3.5.1 Querying Record Files within a Period
	3.5.2 Opening the Record Query Handle
	3.5.3 Finding the Record File
	3.5.4 Closing the Record Query Handle
	3.5.5 Downloading Record by File
	3.5.6 Downloading Record by Time
	3.5.7 Querying the record downloading progress
	3.5.8 Stopping Record Downloading

	3.6 PTZ Control
	3.6.1 PTZ Control

	3.7 Voice Talk
	3.7.1 Opening Voice Talk
	3.7.2 Stopping Voice Talk
	3.7.3 Starting Local Recording
	3.7.4 Stopping Local Recording
	3.7.5 Talk Data Sending
	3.7.6 Audio Decoding

	3.8 Video Snapshot
	3.8.1 Capturing Picture to File
	3.8.2 Capturing Picture

	3.9 Intelligent Event
	3.9.1 Subscribing Intelligent Event
	3.9.2 Unsubscribing Smart

	3.10 Alarm Upload
	3.10.1 Setting Alarm Callback
	3.10.2 Subscribing to Alarm
	3.10.3 Stopping Alarm Subscription

	3.11 Device Status and Information
	3.11.1 Querying Device State
	3.11.2 Querying Device Information
	3.11.3 Subscribing to State of Remote Device
	3.11.4 Stopping Subscribing State of Remote Device
	3.11.5 Getting Information of Remote Device
	3.11.6 Getting Channel Name

	4 Callback Function
	4.1 fDisConnectCallBack
	4.2 fHaveReConnectCallBack
	4.3 fRealDataCallBackEx
	4.4 fAudioDataCallBack
	4.5 fDownLoadPosCallBack
	4.6 fDataCallBack
	4.7 fTimeDownLoadPosCallBack
	4.8 fMessCallBackEx
	4.9 fCameraStateCallBack
	4.10 fAnalyzerDataCallBack

	Appendix 1 Cybersecurity Recommendations

