

NetSDK_JAVA Auto Register

User’s Manual

V1.0.0

V1.0.0

I

Foreword

General

This document describes the basic process of Demo demonstration and development of

NetSDK JAVA auto register.

Safety Instructions

The following symbols may appear in this document and their meanings are as follows:

Sign Description

 DANGER

Indicates a high potential hazard which, if not avoided, will result in

death or serious injury.

 WARNING

Indicates a medium or low potential hazard which, if not avoided,

could result in slight or moderate injury.

 CAUTION

Indicates a potential risk which, if not avoided, could result in property

damage, data loss, lower performance, or unpredictable result.

 TIPS Provides methods to help you solve a problem or save you time.

 NOTE
Provides additional information as the emphasis and supplement to

the text.

Revision History

Version Revision Content Release Time

V1.0.0 First release. October 2020

II

Table of Contents

Foreword .. I

1 Introduction ... 1

 Overview ... 1 1.1

 Process of NetSDK Auto Register .. 1 1.2

2 Use of Java Auto Register Demo .. 2

3 Auto Register Interfaces .. 5

 Configure Device Auto Register Information .. 5 3.1

3.1.1 Introduction... 5

3.1.2 Interface Overview ... 5

3.1.3 Process Description ... 6

3.1.4 Sample Code ... 7

 Enable/Stop Auto Register Service .. 9 3.2

3.2.1 Introduction... 9

3.2.2 Interface Overview ... 10

3.2.3 Process Description ... 10

3.2.4 Sample Code ... 11

 Cybersecurity Recommendations ... 14 Appendix 1

1

1 Introduction

 Overview 1.1

NetSDK auto register is used to fix problems like devices in the intranet cannot

be found by servers in the extranet, or device IP addresses being dynamic (when

devices connected to 4G or Wi-Fi network, IP addresses might be dynamic). It is

helpful for servers to monitor device configuration so that applications in different

scenes can be realized or recovered.

NetSDK auto register function includes three aspects:

 Get and configure auto register info of target devices

 Monitoring the start-up and stop of servers.

 Quickly add and delete devices that are under monitoring of the server.

In addition, Demo of Java version provides the following functions: device info

importing and exporting, stream pulling, voice call, and more.

 Process of NetSDK Auto Register 1.2

 The basic process of auto register Figure 1-1

Set the auto register config of the device

IPC 192.168.0.100

Register IP: 192.168.0.1
Register port: 9500
Device ID: test894

IPC 192.168.0.101

Register IP: 192.168.0.1
Register port: 9500
Device ID: test895

……

Listening server PC

Server IP: 192.168.0.1
Listening port: 9500

Enable listening

……

ID: test894

Username: admin

Password: xxxxx

ID: test895

Username: admin

Password: xxxxx

Disable listening
Auto register operation

Add a device and operate it

Table 1-1 Main interface

No. Functions Description

1

Get and set the

auto register

config of the

device

The device has two auto register config methods: Web config

and SDK config. You can use SDK to get and set the auto

register config of devices with fixed IP. For details, see "2 Use of

Java Auto Register Demo."

2
Start and stop

server listening.

SDK provides some basic functions for auto register listening,

including starting and stopping listening.

2

2 Use of Java Auto Register Demo

The device auto registers to the platform. The auto register is supported by

Demo or on the device web. This manual takes auto register by Demo as an

example.

Please configure auto register on the web interface if the platform cannot access

to device due to network restriction. For details of configuring auto register on

web, refer to device user’s manual.

 Start Demo. Run AutoRegister.java to open the auto registration Demo. Step 1

 Log in to device. Click Device Configure, and then enter device IP, port, Step 2

user name, and password. Click Login.

 Log in to device Figure 2-1

 Get and configure auto register. Step 3

1) Click Get to get auto register config information.

2) (Optional) If the obtained config information is not the platform that

the device should register to, please modify to the platform

information.

Device ID is randomly set but cannot be repeated.

3) Select the Enable check box, and then click Set.

The platform sends auto register information to device, and the auto

registration is succeeded.

4) Click Logout, and then click of pop-up window to log out.

3

 Get and config auto register Figure 2-2

 Configure Register Address and Register Port, and then click Start Step 4

Listen to start auto register listening.

 Click Add Device to open the corresponding window. Enter device ID, Step 5

user name, and password, and then click Add to add a device.

Wait for the device to get registered to the platform. When the device

shows green and the channel can be viewed, it means the device has

registered to the platform successfully.

 Start listening and add device to device list Figure 2-3

4

 Successfully added Figure 2-4

 Operate device. Select a channel of the device and then do the Step 6

operations as instructed in the Function Operate area, such as live view,

snapshot, and calling with device.

 Device operations Figure 2-5

5

3 Auto Register Interfaces

 Configure Device Auto Register Information 3.1

3.1.1 Introduction

Users call SDK to configure device auto register info, including enable auto

register, device ID, platform IP address and more.

3.1.2 Interface Overview

Table 3-1 Interface description

Interface Description

CLIENT_Init Initialize SDK

CLIENT_LoginWithHighLevelSecurity Login of high security level

CLIENT_GetNewDevConfig Get config info

CLIENT_ParseData Parse config info

CLIENT_PacketData Combine config info to be sent

CLIENT_SetNewDevConfig Send config info

CLIENT_Logout Log out

CLINET_Cleanup Clear SDK resource

6

3.1.3 Process Description

 Auto register configuration process Figure 3-1

Start

Initialize SDK
CLIENT_Init

Log in to the device
CLIENT_LoginWithHighLevelSecurity

Configure auto register config info
CLIENT_SetNewDevConfig

Search auto register config info
CLIENT_GetNewDevConfig

Parse config info found
CLIENT_ParseData

Log out
CLIENT_Logout

Release SDK resource
CLIENT_Cleanup

End

Combine auto register config info
CLIENT_PacketData

Mandatory

Optional

Process

 Call CLIENT_Init to initialize SDK. Step 1

 Call CLIENT_LoginWithHighLevelSecurity interface to log in to the Step 2

device.

 (Optional) Call CLIENT_GetNewDevConfig interface to get device auto Step 3

register config info and call CLIENT_ParseData interface to parse config

info.

 Call CLIENT_PacketData to combine configured auto register info. Step 4

 Call CLIENT_SetNewDevConfig to send auto register config info. Step 5

 Call CLIENT_Logout interface to log out. Step 6

 Call CLIENT_Cleanup interface to release SDK resource. Step 7

7

Notes

 CLIENT_Init and CLIENT_Cleanup must be called in pair, and single

thread being called multiple times in pairs is supported. It is recommended

that the single thread be called once globally. Do not initialize or clean

resources repeatedly.

 You can program parameters and send the config, but you had better

change the config on the basis of original config to avoid key fields missing.

 Figure out whether the device support auto register function or not.

 Before get/configure auto register, complete SDK basic operations including

initializing and logging in to the target device.

3.1.4 Sample Code

// For general codes, such as initialization and cleanup, please refer to《NetSDK_JAVA

Programming Manual》

//Get and write auto register config

//Get auto register config information

/**

* Get network protocol

* @param m_hLoginHandle Login handle

* @return

*/

public static CFG_DVRIP_INFO getDVRIPConfig(LLong m_hLoginHandle) {

CFG_DVRIP_INFO msg = new CFG_DVRIP_INFO();

 if(!ToolKits.GetDevConfig(m_hLoginHandle, -1, NetSDKLib.CFG_CMD_DVRIP,

msg)){

 return null;

 }

 return msg;

}

//Use ToolKits as shown below. For details, refer to ToolKits.java

/*

 * Get one config

 * @param hLoginHandle Login handle

 * @param nChn Channel number -1 refers to all channels

 * @param strCmd Config name

8

 * @param cmdObject Config the corresponding structured object

 * @return Successfully returns true

 */

public static boolean GetDevConfig(LLong hLoginHandle,int nChn,String

strCmd,Structure cmdObject){

//…Initialize parameters

//Get device config

if(netsdkapi.CLIENT_GetNewDevConfig(hLoginHandle, strCmd , nChn, strBuffer,

nBufferLen,error,3000)){

 cmdObject.write();

 //Parse the obtained config information to cmdObject

if(configapi.CLIENT_ParseData(strCmd,strBuffer,cmdObject.getPointer(),cmdObject.

size(),null)){

 cmdObject.read();

 //…

}

}

}

//Set auto register config information

/**

* Config network protocol

 * @param m_hLoginHanle Login handle

 * @param enable

 * @param address Server IP

 * @param nPort Server Port

 * @param deviceId Device ID

 * @param info Obtained network protocol config

 * @return

 */

public static boolean setDVRIPConfig(LLong m_hLoginHandle, boolean enable, String

address, int nPort, byte[] deviceId, CFG_DVRIP_INFO info){

 CFG_DVRIP_INFO msg=info;

//Parameter config, for details, refer to AutoRegisterModule.java

//Send config

return ToolKits.SetDevConfig(m_LoginHandle,-1,NetSDKLib.CFG_CMD_DVRIP,msg);

}

9

/*

 * Set single config, and this code is in ToolKits.java

 * @param hLoginHandle Login handle

 * @param nChn Channel number ,-1, refers to all channels

 * @param strCmd Config name

 * @param cmdObject Config corresponding structure

 * @return successfully returns true

 */

public static boolean SetDevConfig(LLong hLoginHandle,int nChn,String

strCmd,Structure cmdObject){

//Parameter config…

cmdObject.write();

//Pack up config data

if(configapi.CLIENT_PacketData(strCmd,cmdObject.getPointer(),cmdObject.size(),s

zBuffer,nBufferLen)){

cmdObject.read();

//Send config

if(netsdkapi.CLIENT_SetNewDevConfig(hLoginHandle,strCmd,nChn,szBuffer,n

BufferLen,error,restart,30000)){

result=true;

}else{

result=false;

}

}

return result;

}

 Enable/Stop Auto Register Service 3.2

3.2.1 Introduction

SDK provides auto register service, which is used to detect and monitor devices

that are registered to the management platform. The detection and monitoring

include starting up and stopping.

10

3.2.2 Interface Overview

Table 3-2 Starting up and stopping detection and monitoring interface

Functions Description

CLIENT_Init Initialize SDK

CLIENT_ListenServer Start auto register detection and monitoring

CLIENT_StopListenServer Stop auto register detection and monitoring

CLIENT_Cleanup Clear SDK resources

3.2.3 Process Description

 Starting up and stopping detection and monitoring Figure 3-2

Start

Initialize SDK
CLIENT_Init

Start detection and
monitoring

CLIENT_ListenServer

Log in to the device
CLIENT_LoginWithHighLevelSecurity

Other operations

Log out
CLIENT_Logout

Stop detection and
monitoring

CLIENT_StopListenServer

Release SDK resource
CLIENT_Cleanup

End

Mandotary

Optional

Process

 Call CLIENT_Init to initialize interfaces to complete SDK initialization. Step 1

 Call CLIENT_ListenServer interface to start device detection and Step 2

monitoring. You need to import auto register detection and monitoring

callback function fServiceCallBack for the CLIENT_ListenServer

interface. Through this callback function, you can get IP address, ID, port

and more info about devices that are registered to the management

platform. In the detection and monitoring status, callback function will

return IP address, ID, port and more info of the devices that are

11

registered to the management platform. You can log in to devices and do

other operations after getting info from the callback function.

 Call CLIENT_StopListenServer interface to end detection and Step 3

monitoring.

 Call CLIENT_Cleanup interface to clear and release SDK resources. Step 4

Notes

 CLIENT_Init and CLIENT_Cleanup must be called in pairs, and single

thread being called multiple times in pairs is supported. It is recommended

that the single thread be called once globally. Do not initialize or clean

resources repeatedly.

 Make sure the target IP of auto register config match with the server IP and

port.

 On in the detection and monitoring status, the server can communicate with

auto register devices. Therefore, all sending command operations to

devices by the server must be done in the detection and monitoring status,

which means the detection and monitoring cannot be stopped.

 If SDK interfaces needed to be called in the callback function, please create

a separate thread; otherwise the program will crash.

3.2.4 Sample Code

// For general codes, such as initialization and cleanup, please refer to《NetSDK_JAVA

Programming Manual》

// Config detection callback

/**

* Detect server callback

*/

public class ServiceCB implements fServiceCallBack {

 @Override

 public int invoke(LLong lHandle, final String pIp, final int wPort,

 int lCommand, Pointer pParam, int dwParamLen,Pointer dwUserData) {

 // Convert pParam to serial number

 byte[] buffer = new byte[dwParamLen];

 pParam.read(0, buffer, 0, dwParamLen);

 String deviceId = "";

 try {

 deviceId = new String(buffer, "GBK").trim();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

12

 }

 switch(lCommand) {

 // Verify devices disconnection callback

 case EM_LISTEN_TYPE.NET_DVR_DISCONNECT: {

 //For details, refer to AutoRegister.javabreak;

 }

 // Carry serial number during device registration

 case EM_LISTEN_TYPE.NET_DVR_SERIAL_RETURN: {

 //Interface operations…

 //Start a new thread to log in

 new SwingWorker<LLong, String>() {

 @Override

 protected LLong doInBackground() {

 return login(deviceTreeNode);

 }

 @Override

 protected void done() {

 try {

 if(get() == null) {return;}

 //Update interface operations…

 }.execute();

 break;

 }

 }

 break;

 }

 default:

 break;

 }

 return 0;

 }

}

//Start listening and registering detection service callback

private ServiceCB serviceCallback=new ServiceCB();

/**

* Enable service

13

* @param address Local IP address

* @param port Local port, randomly

* @param callback

*/

public static boolean startServer(String address, int port, fServiceCallBack callback) {

 mServerHandler = LoginModule.netsdk.CLIENT_ListenServer(address, port, 1000,

callback, null);

 if (0 == mServerHandler.longValue()) {

 System.err.println("Failed to start server." + ToolKits.getErrorCodePrint());

 } else {

 System.out.printf("Start server, [Server address %s][Server port %d]\n", address,

port);

 }

return mServerHandler.longValue() != 0;

}

//End listening

/**

* End service

*/

public static boolean stopServer() {

boolean bRet = false;

//Use the monitoring handle obtained by enabled service

if(mServerHandler.longValue() != 0) {

 bRet = LoginModule.netsdk.CLIENT_StopListenServer(mServerHandler);

 mServerHandler.setValue(0);

 System.out.println("Stop server!");

 }

 return bRet;

}

14

 Cybersecurity Recommendations Appendix 1

Cybersecurity is more than just a buzzword: it’s something that pertains to every device that is

connected to the internet. IP video surveillance is not immune to cyber risks, but taking basic steps

toward protecting and strengthening networks and networked appliances will make them less

susceptible to attacks. Below are some tips and recommendations on how to create a more secured

security system.

Mandatory actions to be taken for basic device network security:

1. Use Strong Passwords

Please refer to the following suggestions to set passwords:

 The length should not be less than 8 characters;

 Include at least two types of characters; character types include upper and lower case

letters, numbers and symbols;

 Do not contain the account name or the account name in reverse order;

 Do not use continuous characters, such as 123, abc, etc.;

 Do not use overlapped characters, such as 111, aaa, etc.;

2. Update Firmware and Client Software in Time

 According to the standard procedure in Tech-industry, we recommend to keep your device

(such as NVR, DVR, IP camera, etc.) firmware up-to-date to ensure the system is

equipped with the latest security patches and fixes. When the device is connected to the

public network, it is recommended to enable the “auto-check for updates” function to obtain

timely information of firmware updates released by the manufacturer.

 We suggest that you download and use the latest version of client software.

"Nice to have" recommendations to improve your device network security:

1. Physical Protection

We suggest that you perform physical protection to device, especially storage devices. For

example, place the device in a special computer room and cabinet, and implement well-done

access control permission and key management to prevent unauthorized personnel from

carrying out physical contacts such as damaging hardware, unauthorized connection of

removable device (such as USB flash disk, serial port), etc.

2. Change Passwords Regularly

We suggest that you change passwords regularly to reduce the risk of being guessed or

cracked.

3. Set and Update Passwords Reset Information Timely

The device supports password reset function. Please set up related information for password

reset in time, including the end user’s mailbox and password protection questions. If the

information changes, please modify it in time. When setting password protection questions, it is

suggested not to use those that can be easily guessed.

4. Enable Account Lock

The account lock feature is enabled by default, and we recommend you to keep it on to

guarantee the account security. If an attacker attempts to log in with the wrong password

several times, the corresponding account and the source IP address will be locked.

5. Change Default HTTP and Other Service Ports

15

We suggest you to change default HTTP and other service ports into any set of numbers

between 1024~65535, reducing the risk of outsiders being able to guess which ports you are

using.

6. Enable HTTPS

We suggest you to enable HTTPS, so that you visit Web service through a secure

communication channel.

7. MAC Address Binding

We recommend you to bind the IP and MAC address of the gateway to the device, thus

reducing the risk of ARP spoofing.

8. Assign Accounts and Privileges Reasonably

According to business and management requirements, reasonably add users and assign a

minimum set of permissions to them.

9. Disable Unnecessary Services and Choose Secure Modes

If not needed, it is recommended to turn off some services such as SNMP, SMTP, UPnP, etc., to

reduce risks.

If necessary, it is highly recommended that you use safe modes, including but not limited to the

following services:

 SNMP: Choose SNMP v3, and set up strong encryption passwords and authentication

passwords.

 SMTP: Choose TLS to access mailbox server.

 FTP: Choose SFTP, and set up strong passwords.

 AP hotspot: Choose WPA2-PSK encryption mode, and set up strong passwords.

10. Audio and Video Encrypted Transmission

If your audio and video data contents are very important or sensitive, we recommend that you

use encrypted transmission function, to reduce the risk of audio and video data being stolen

during transmission.

Reminder: encrypted transmission will cause some loss in transmission efficiency.

11. Secure Auditing

 Check online users: we suggest that you check online users regularly to see if the device is

logged in without authorization.

 Check device log: By viewing the logs, you can know the IP addresses that were used to log

in to your devices and their key operations.

12. Network Log

Due to the limited storage capacity of the device, the stored log is limited. If you need to save

the log for a long time, it is recommended that you enable the network log function to ensure

that the critical logs are synchronized to the network log server for tracing.

13. Construct a Safe Network Environment

In order to better ensure the safety of device and reduce potential cyber risks, we recommend:

 Disable the port mapping function of the router to avoid direct access to the intranet

devices from external network.

 The network should be partitioned and isolated according to the actual network needs. If

there are no communication requirements between two sub networks, it is suggested to

use VLAN, network GAP and other technologies to partition the network, so as to achieve

the network isolation effect.

 Establish the 802.1x access authentication system to reduce the risk of unauthorized

access to private networks.

16

 Enable IP/MAC address filtering function to limit the range of hosts allowed to access the

device.

	Foreword
	1 Introduction
	1.1 Overview
	1.2 Process of NetSDK Auto Register

	2 Use of Java Auto Register Demo
	3 Auto Register Interfaces
	3.1 Configure Device Auto Register Information
	3.1.1 Introduction
	3.1.2 Interface Overview
	3.1.3 Process Description
	3.1.4 Sample Code

	3.2 Enable/Stop Auto Register Service
	3.2.1 Introduction
	3.2.2 Interface Overview
	3.2.3 Process Description
	3.2.4 Sample Code

	Appendix 1 Cybersecurity Recommendations

